Citation: XIE Xin, LI Ying-jie. HCl removal characteristics of carbide slag in a calcination/chlorination reactor[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(5): 560-566. shu

HCl removal characteristics of carbide slag in a calcination/chlorination reactor

  • Corresponding author: LI Ying-jie, 
  • Received Date: 25 November 2013
    Available Online: 12 January 2014

    Fund Project: 国家自然科学基金(51376003) (51376003)山东大学自主创新基金(2012TS053)。 (2012TS053)

  • The carbide slag as a calcium-based waste was calcined and used to remove HCl. The effects of HCl removal reaction temperature, HCl volume fraction, particle size and calcination temperature on the dechlorination performance of carbide slag were examined in a calcination/chlorination reactor. The results show that the carbide slag has the highest chlorination conversion at 700 ℃, and has higher chlorination conversions than limestone at the temperature above 650 ℃. It indicates that the carbide slag has a better dechlorination performance at higher temperature. The chlorination conversion of carbide slag rises linearly with the increasing of HCl volume fraction. As the particle size increases, the chlorination conversion decreases slowly. The calcination temperature above 900 ℃ is adverse to the HCl removal by carbide slag. The calcined carbide slag possesses more pores in the range of 2~10 nm. And after chlorination, the volume and area of pores in 2~10 nm drop by 56.2% and 62.2%,respectively. The pores in 2~10 nm may be the dominating area for the calcined carbide slag to absorb HCl.
  • 加载中
    1. [1]

      [1] CORELLA J, TOLEDO J M, MOLINA G. Performance of CaO and MgO for the hot gas clean up in gasification of a chlorine-containing (RDF) feedstock[J]. Bioresour Technol, 2008, 99(16): 7539-7544.

    2. [2]

      [2] 李晓东, 杨忠灿, 陆胜勇, 严建华, 倪明江. 城市生活垃圾氯含量测定方法的研究[J]. 燃料化学学报, 2002, 30(6): 563-568. (LI Xiao-dong, YANG Zhong-can, LU Sheng-yong, YAN Jian-hua, NI Ming-jiang. Study on determination methods for chlorine content in municipal solid waste (MSW)[J]. Journal of Fuel Chemistry and Technology, 2002, 30(6): 563-568.)

    3. [3]

      [3] EINVALL J, PARSLAND C, BENITO P, BASILE F, BRANDIN J. High temperature water-gas shift step in the production of clean hydrogen rich synthesis gas from gasified biomass[J]. Biomass Bioenergy, 2011, 35(S1): S123-S131.

    4. [4]

      [4] 余春江, 骆仲泱, 张文楠, 方梦祥, 周劲松, 岑可法. 碱金属及相关无机元素在生物质热解中的转化析出[J]. 燃料化学学报, 2000, 28(5): 420-425. (YU Chun-jiang, LUO Zhong-yang, ZHANG Wen-nan, FANG Meng-xiang, ZHOU Jin-song, CEN Ke-fa. Norganic material emission during biomass pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2000, 28(5): 420-425.)

    5. [5]

      [5] 蒋旭光, 李香排, 池涌, 严建华. 木屑焚烧过程中氯化氢排放特性研究[J]. 燃料化学学报, 2004, 32(3): 307-311. (JIANG Xu-guang, LI Xiang-pai, CHI Yong, YAN Jian-hua. Emission characters of HCl during sawdust incineration[J]. Journal of Fuel Chemistry and Technology, 2004, 32(3): 307-311.)

    6. [6]

      [6] 李香排, 蒋旭光, 李琦, 池涌, 严建华. 钙基脱氯剂固定床脱氯动力学模型[J]. 化工学报, 2004, 55(8): 1280-1284. (LI Xiang-pai, JIANG Xu-guang, LI Qi, CHI Yong, YAN Jian-hua. Kinetic model of dechlorination of Ca-based sorbents in fixed-bed[J]. Journal of Chemical Industry and Engineering(China), 2004, 55(8): 1280-1284.)

    7. [7]

      [7] WEINELL C E, JENSEN P I, JOHANSEN K D, LIVBJERG H. Hydrogen chloride reaction with lime and limestone: Kinetics and sorption capacity[J]. Ind Eng Chem Res, 1992, 31(1): 164-171.

    8. [8]

      [8] 郭小汾, 杨雪莲, 李海滨, 陈勇, 谢克昌. 钙化物对HCl的脱除动力学研究[J]. 中国环境科学, 2000, 20(3): 212-214. (GUO Xiao-fen, YANG Xue-lian, LI Hai-bin, CHEN Yong, XIE Ke-chang. Study on the kinetics of hydrochloric acid removal by calcium compound[J]. China Environmental Science, 2000, 20(3): 212-214.)

    9. [9]

      [9] 郭小汾, 杨雪莲, 李海滨, 陈勇, 李凡, 谢克昌. 钙化合物的种类对脱氯特性的影响[J]. 环境科学学报, 2000, 20(6): 776-780. (GUO Xiao-fen, YANG Xue-lian, LI Hai-bin, CHEN Yong, LI Fan, XIE Ke-chang. The characteristic of chlorine removal by calcium[J]. Journal of Environmental Sciences, 2000, 20(6): 776-780.)

    10. [10]

      [10] 卿山, 王华, 何屏, 吕国强. 医疗废物焚烧过程中脱氯机理和试验[J]. 环境工程, 2007, 25(3): 66-70. (QING Shan, WANG Hua, HE Ping, LV Guo-qiang. Dechloridization mechanism and experiment in incineration process of medical wastes[J]. Environmental Engineering, 2007, 25(3): 66-70.)

    11. [11]

      [11] PARTANEN J, BACKMAN P, BACKMAN R, HUPA M. Absorption of HCl by limestone in hot flue gases. Part I: The effects of temperature, gas atmosphere and absorbent quality[J]. Fuel, 2005, 84(12/13): 1664-1673.

    12. [12]

      [12] SUN Z C, YU F C, LI F X, LI S G, FAN L S. Experimental study of HCl capture using CaO sorbents: Activation, deactivation, reactivation, and ionic transfer mechanism[J]. Ind Eng Chem Res, 2011, 50(10): 6034-6043.

    13. [13]

      [13] SHEMWELL B, LEVENDIS Y A, SIMONS G A. Laboratory study on the high-temperature capture of HCl gas by dry-injection of calcium-based sorbents[J]. Chemosphere, 2001, 42(5/7): 785-796.

    14. [14]

      [14] 蒋旭光, 李琦, 李香排, 严建华, 池涌. 燃煤过程中钙基及镁基吸收剂对HCl吸收作用的试验研究[J]. 煤炭学报, 2003, 28(6): 626-630. (JIANG Xu-guang, LI Qi, LI Xiang-pai, YAN Jian-hua, CHI Yong. Chloride of emission control by calcium-based and magnesium-based sorbents during coal combustion[J]. Journal of China Coal Society, 2003, 28(6): 626-630.)

    15. [15]

      [15] CHYANG C S, HAN Y L, ZHONG Z C. Study of HCl absorption by CaO at high temperature[J]. Energy Fuels, 2009, 23(8): 3948-3953.

    16. [16]

      [16] WANG Z Q, HUANG H T, LI H B, WU C Z, CHEN Y. HCl formation from RDF pyrolysis and combustion in a spouting-moving bed reactor[J]. Energy Fuels, 2002, 16(3): 608-614.

    17. [17]

      [17] CHIN T, YAN R, LIANG D T. Study of the reaction of lime with HCl under simulated flue gas conditions using X-ray diffraction characterization and thermodynamic prediction[J]. Ind Eng Chem Res, 2005, 44(23): 8730-8738.

    18. [18]

      [18] MATSUKATA M, TAKEDA K, MIYATANI T, UEYAMA K. Simultaneous chlorination and sulphation of calcined limestone[J]. Chem Eng Sci, 1996, 51(11): 2529-2534.

    19. [19]

      [19] FONSECA A M, ORFAO J J, SALCEDO R L. Kinetic modeling of the reaction of HCl and solid lime at low temperatures[J]. Ind Eng Chem Res, 1998, 37(12): 4570-4576.

    20. [20]

      [20] PARTANEN J, BACKMAN P, BACKMAN R, HUPA M. Absorption of HCl by limestone in hot flue gases. Part Ⅲ: Simultaneous absorption with SO2[J]. Fuel, 2005, 84(12/13): 1685-1694.

    21. [21]

      [21] NIMMO W, PATSIAS A A, HALL W J, WILLIAMS P T. Characterization of a process for the in-furnace reduction of NOx, SO2, and HCl by carboxylic salts of calcium[J]. Ind Eng Chem Res, 2005, 44(12): 4484-4494.

    22. [22]

      [22] LI Y J, SUN R Y, LIU C T, LIU H L, LU C M. CO2 capture by carbide slag from chlor-alkali plant in calcination/carbonation cycles[J]. Int J Greenh Gas Control, 2012, 9: 117-123.

    23. [23]

      [23] 吴立, 邓福生. 垃圾焚烧烟气中氯化氢的干法去除研究[J]. 资源调查与环境, 2005, 26(3): 214-219. (WU Li, DENG Fu-sheng. Study on the dry removal of HCl in flue gas in waste cinerator[J]. Resources Survey & Environment, 2005, 26(3): 214-219.)

    24. [24]

      [24] CHENG J, ZHOU J H, LIU J Z, CAO X Y, CEN K F. Physicochemical characterizations and desulfurization properties in coal combustion of three calcium and sodium industrial wastes[J]. Energy Fuels, 2009, 23(5): 2506-2516.

    25. [25]

      [25] WU S F, LI Q H, KIM J N, YI K B. Properties of a nano-CaO/Al2O3 CO2 sorbent[J]. Ind Eng Chem Res, 2008, 47(1): 180-184.

    26. [26]

      [26] WANG W Y, YE Z C, BJERLE I. The kinetics of the reaction of hydrogen chloride with fresh and spent Ca-based desulfurization sorbents[J]. Fuel, 1996, 75(2): 207-212.

  • 加载中
    1. [1]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    2. [2]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    3. [3]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    4. [4]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    5. [5]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    6. [6]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

    7. [7]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    8. [8]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    9. [9]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    10. [10]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

    11. [11]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    12. [12]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    13. [13]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    14. [14]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    15. [15]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    16. [16]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    17. [17]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    18. [18]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    19. [19]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    20. [20]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

Metrics
  • PDF Downloads(0)
  • Abstract views(500)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return