Citation: HAO Jiang-tao, YU Wei, LU Ping, WANG Qin-chao, HE Nan, ZHU Xiu-ming, XU Sen-rong. Influence factors and element release properties during NO reduction through biomass advanced reburning[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(5): 552-559. shu

Influence factors and element release properties during NO reduction through biomass advanced reburning

  • Corresponding author: LU Ping, 
  • Received Date: 2 December 2013
    Available Online: 20 February 2014

    Fund Project: 国家自然科学基金(51076067) (51076067)江苏省自然科学基金(BK2010081)。 (BK2010081)

  • NO reduction through advanced reburning (AR) with biomass including rice husk (RH), phoenix tree leaves (PTL) and saw dust (SD) was tested in an entrained flow reactor (EFR). The effects of reburning fuel species, reaction temperature in the reburning-zone (t2), the location of ammonia injection, water vapor and additives on the NO reduction were investigated. Furthermore, the migration of chloride and potassium elements during biomass advanced reburning was examined. The results indicate that the NO removal efficiency via biomass advanced reburning shows a tendency of increase first and decrease later with increasing the reaction temperature in the reburning-zone from 850 ℃ to 1 150 ℃. The same tendency is also found as SR2 increases from 0.5 to 1.0. The location of ammonia injection has a certain influence on the NO reduction with rice husk when the residence time is in the range of 0.4~1.0 s. The water vapor (0~15%) in the flue gas not only improves the NO removal efficiency, but also broadens the window temperature of DeNOx, and the best NO removal efficiency can be obtained when the water vapor is about 4%. Additives (Fe2O3, KCl, NaCl and CaO) have a better promoting effects on the NO reduction through advanced reburning with rice husk, in which Fe2O3 shows the most significant effect on the NO reduction. The release of chlorine and potassium during advanced reburning with rice husk can reach more than 95.0% and 59.8%, respectively.
  • 加载中
    1. [1]

      [1] HARDING N S, BRADLEY R A. Biomass as a reburning fuel: A specialized cofiring application[J]. Biomass Bioenergy, 2000, 19(6): 429-445.

    2. [2]

      [2] 段佳, 罗永浩, 晏乃强, 陈祎, 陆方, 王清成. 生物质气化再燃特性实验研究[J]. 燃料化学学报, 2007, 35(2): 245-248. (DUAN Jia, LUO Yong-hao, YAN Nai-qiang, CHEN Yi. LU Fang, WANG Qing-cheng. Experimental study on characteristics of biomass gasification-reburning[J]. Journal of Fuel Chemistry and Technology, 2007, 35(2): 245-248.)

    3. [3]

      [3] 王永桥, 陆飞, 刘永生, 卢平. 生物质再燃脱硝及异相还原研究[J]. 中国电机工程学报, 2010, 30(26): 101-106. (WANG Yong-qiao, LU Fei, LIU Yong-sheng, LU Ping. Study on NOx reduction and its heterogeneous mechanism during biomass reburning[J]. Proceedings of the CSEE, 2010, 30(26): 101-106.)

    4. [4]

      [4] 王秦超, 卢平, 黄震, 亓海明, 李臣良. 生物质炭再燃脱硝特性的实验研究[J]. 动力工程学报, 2013, 33(4): 296-302. (WANG Qin-chao, LU Ping, HUANG Zhen, QI Hai-ming, LI Chen-liang. Experimental studies on NO reduction by reburning with biomass char[J]. Chinese Society of Power Engineering, 2013, 33(4): 296-302.)

    5. [5]

      [5] 高攀, 路春美, 甄天雷, 刘磊. 高级再燃气体脱硝特性的研究[J]. 燃料化学学报, 2007, 35(5): 632-636. (GAO Pan, LU Chun-mei, ZHEN Tian-lei, LIU Lei. Study on NO reduction by advanced gas reburning[J]. Journal of Fuel Chemistry and Technology, 2007, 35(5): 632-636.)

    6. [6]

      [6] 刘洪涛, 韩奎华, 路春美, 李辉. O2/CO2气氛下木醋调质石灰石再燃/先进再燃脱硝性能研究[J]. 燃料化学学报, 2013, 41(2): 228-233. (LIU Hong-tao, HAN Kui-hua, LU Chun-mei, LI Hui. Experimental study on reburning/advanced reburning performance of limestone modified by wood vinegar for NO reduction under O2/CO2 atmosphere[J]. Journal of Fuel Chemistry and Technology, 2013, 41(2): 228-233.)

    7. [7]

      [7] HAN K, NIU S, LU C. Experimental study on biomass advanced reburning for nitrogen oxides reduction[J]. Process Saf Environ, 2010, 88(6): 425-430.

    8. [8]

      [8] GROSS R, LEACH M, BAUEN A. Progress in renewable energy[J]. Environ Int, 2003, 29(1): 105-122.

    9. [9]

      [9] 牛胜利, 韩奎华, 路春美. 生物质先进再燃脱硝特性研究[J]. 燃料化学学报, 2010, 38(6): 746-751. (NIU Sheng-li, HAN Kui-hua, LU Chun-mei. Study on nitrogen oxides reduction by biomass advanced reburning process[J]. Journal of Fuel Chemistry and Technology, 2010, 38(6): 746-751.)

    10. [10]

      [10] 沈伯雄, 孙幸福. 水蒸气对先进再燃区脱硝效率的影响研究[J]. 电站系统工程, 2006, 22(1): 41-43. (SHEN Bo-xiong, SUN Xing-fu. Experimental study on advanced reburning to De-NOx under high temperature[J]. Power System Engineering, 2006, 22(1): 41-43.)

    11. [11]

      [11] LEE S, PARK K, PARK J, KIM B. Characteristics of reducing NO using urea and alkaline additives[J]. Combust Flame, 2005, 138(2): 200-203.

    12. [12]

      [12] MALY P M, ZAMANSKY V M, HO L, PAYNE R. Alternative fuel reburning[J]. Fuel, 1999, 78(3): 327-334.

    13. [13]

      [13] 陈安和, 杨学民, 林伟刚. 生物质热解和气化过程Cl及碱金属逸出行为的化学热力学平衡分析[J]. 燃料化学学报, 2007, 35(5): 539-547. (CHEN An-he, YANG Xue-min, LIN Wei-gang. Release characteristics of chlorine and alkali metals during pyrolysis and gasification of biomass by thermodynamical equilibrium analysis[J]. Journal of Fuel Chemistry and Technology, 2007, 35(5): 539-547.)

    14. [14]

      [14] JOHANSEN J M, AHO M, PAAKKINEN K, TAIPALE R, EGSGAARD H, JAKOBSEN J G, FRANDSEN F J, GLARBORG P. Release of K, Cl, and S during combustion and co-combustion with wood of high-chlorine biomass in bench and pilot scale fuel beds[J]. Pro Combust Inst, 2013, 34(2): 2363-2372.

    15. [15]

      [15] 付世龙, 宋蔷, 仲蕾, 姚强. 粉体对分解炉内SNCR反应影响的研究[J]. 燃料化学学报, 2013, 41(5): 636-640. (FU Shi-long, SONG Qiang, ZHONG Lei, YAO Qiang. Influence of calcium-based particles on the selective non-catalytic reduction process in a pre-calciner[J]. Journal of Fuel Chemistry and Technology, 2013, 41(5): 636-640.)

    16. [16]

      [16] LU P, WANG YQ, HUANG Z, LU F, LIU Y. Study on NO reduction and its heterogeneous mechanism through biomass reburning in an entrained flow reactor[J]. Energy Fuels, 2011, 25(7): 2956-2962.

    17. [17]

      [17] RUDIGER H, KICHERER A, GREUL U, SPLIETHOFF H, HEIN K R. Investigations in combined combustion of Biomass and coal in power plant technology[J]. Energy Fuels, 1996, 10(3): 789-796.

    18. [18]

      [18] ZAMANSKY V M, MALY P M, LISSIANSKI V V, SHELDON M S, MOYEDA D, PAYNE R. Second generation advanced reburning for high efficiency NOx control: Final Report[R]. DE-AC22-95PC95251, 2001.

    19. [19]

      [19] ZHONG B J, SHI W W, FU W B. Effects of fuel characteristics on the NO reduction during the reburning with coals[J]. Fuel Process Technol, 2002, 79(1): 93-106.

    20. [20]

      [20] 林晓芬, 张军, 尹艳山, 盛昌栋. 生物质炭孔隙分形特征研究[J]. 生物质化学工程, 2009, 43(3): 9-12. (LIN Xiao-fen, ZHANG Jun, YIN Yan-shan, SHENG Chang-dong. Study on fractal characteristics of biomass chars[J]. Biomass Chemical Engineering, 2009, 43(3): 9-12.)

    21. [21]

      [21] KILPINEN P, GLARBORG P, HUPA M. Reburning chemistry: A kinetic modeling study[J]. Ind Eng Chem Res, 1992, 31(6): 1477-1490.

    22. [22]

      [22] JAVED M T, IRFAN M, GIBBS B M. Control of combustion-generated nitrogen oxides by selective non-catalytic reduction[J]. Environ Manage, 2007, 83(3): 251-298.

    23. [23]

      [23] LISSIANSKI V V, MALY P M. Utilization of iron additives for advanced control of NOx emissions from stationary combustion sources[J]. Ind Eng Chem Res. 2001, 40(15): 3287-3293.

    24. [24]

      [24] 苏亚欣, 邓文义, 苏阿龙. 甲烷在氧化铁表面还原NO 的特性与反应机理研究[J]. 燃料化学学报, 2013, 41(9): 1129-1135. (SU Ya-xin, DENG Wen-yi, SU A-long. NO reduction by methane over iron oxides and the mechanism[J]. Journal of Fuel Chemistry and Technology, 2013, 41(9): 1129-1135.)

    25. [25]

      [25] ZAMANSKY V M, LISSIANSKI V V, MALY PM, HO L, RUSLI D, GARDINER W C. Reactions of sodium species in the promoted SNCR process[J]. Combust Flame, 1999, 117(4): 821-831.

    26. [26]

      [26] LISSIANSKI V V, ZAMANSKY V M, MALY P M. Effect of metal-containing additives on NOx reduction in combustion and reburning[J]. Combust Flame, 2001, 125(3): 1118-1127.

    27. [27]

      [27] WEI X L, SCHNELL U, HEIN K R G. Behavior of gaseous chlorine and alkali metals during biomass thermal utilization[J]. Fuel, 2005, 84(7/8): 841-848.

    28. [28]

      [28] 窦沙沙, 何芳, 王丽红, 易维明. 玉米秸秆热解挥发分元素含量分析[J]. 可再生能源, 2006, (5): 22-24. (DOU Sha-sha, HE Fang, WANG Li-hong, YI Wei-ming. Elemental content of volatiles from corn stalk pyrolysis[J]. Renewable Energy, 2006, (5): 22-24.)

    29. [29]

      [29] NIU Y, DU W, TAN H, XU W, LIU Y, XIONG Y, HUI S. Further study on biomass ash characteristics at elevated ashing temperatures: The evolution of K, Cl, S and the ash fusion characteristics[J]. Bioresource Technol, 2013, 129: 642-645.

  • 加载中
    1. [1]

      Zhonghan Xu Yuejia Li Kin Shing Chan . 碳中和新旅程. University Chemistry, 2025, 40(6): 167-171. doi: 10.12461/PKU.DXHX202407075

    2. [2]

      Qianqian ZHULihui XUHong PANChengjian YAOHong ZHAONan MAXiaolin SHIZihan SHENWeijun ZHANGZhongjian WANG . Waste cotton fabric-ased porous carbon materials: Preparation and wave-absorbing properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1555-1564. doi: 10.11862/CJIC.20250040

    3. [3]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    4. [4]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    5. [5]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    6. [6]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    7. [7]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    8. [8]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    9. [9]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    10. [10]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    11. [11]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    12. [12]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

    13. [13]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    14. [14]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    15. [15]

      Siyao Zhan Yajiao Wang Zhihuan Cai Ayizhada Maimaitiyumier Tilan Duan Xiangfeng Wei Qi Wang Jiehua Liu Xianghua Kong . Exploration of the Chemical Elements across Time and Space. University Chemistry, 2024, 39(9): 5-10. doi: 10.12461/PKU.DXHX202403071

    16. [16]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    17. [17]

      Chi Zhang Yi Xu Xiaopeng Guo Zian Jie Ling Li . 五彩斑斓的秘密——物质显色机理. University Chemistry, 2025, 40(6): 266-275. doi: 10.12461/PKU.DXHX202407061

    18. [18]

      Xiangli Wang Yuanfu Deng . Teaching Design of Elemental Chemistry from the Perspective of “Curriculum Ideology and Politics”: Taking Arsenic as an Example. University Chemistry, 2024, 39(2): 270-279. doi: 10.3866/PKU.DXHX202308092

    19. [19]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    20. [20]

      Yuheng Zhou . 大学课堂的色彩——探索过渡元素的美. University Chemistry, 2025, 40(6): 303-309. doi: 10.12461/PKU.DXHX202407110

Metrics
  • PDF Downloads(0)
  • Abstract views(582)
  • HTML views(70)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return