Citation: JIAO Fa-cun, ZHOU Bo-han, YAN Yu-le, ZHOU Yu-hui, DONG Zhong-bing. Effect of CaO on leaching characteristics of arsenic in fly ash from fluidized bed coal combustion[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(5): 534-538. shu

Effect of CaO on leaching characteristics of arsenic in fly ash from fluidized bed coal combustion

  • Corresponding author: JIAO Fa-cun, 
  • Received Date: 25 October 2013
    Available Online: 19 January 2014

    Fund Project: 国家质检总局科技计划(2013QK344) (2013QK344)淮南市科技计划(2013A04) (2013A04)

  • The leaching characteristics of arsenic in fly ash from coal combustion in lab-scale fluidized bed were clarified. Calcium oxide was mixed with fed coal for matching different Ca/S molar ratio to investigate the role of calcium on the leaching behavior of arsenic. The results indicate that increase in Ca/S molar ratio promotes the retention of arsenic in fly ash and in turn reduces its emission. The reaction between CaO and arsenic is largely dependent on the sulfation of CaO. Leaching of arsenic from fly ash is greatly dependent on the pH value of leachate. Alkali fly ash generates a high pH value solution during leaching test, facilitating the prohibition of arsenic leaching. The mechanism of arsenic leaching in alkali fly ash can be described as that arsenic first releases from fly ash quickly and then subjects to the reaction with calcium to form precipitate under high pH value condition.
  • 加载中
    1. [1]

      [1] TIAN H, WANG Y, XUE Z, QU Y, CHAI F, HAO J. Atmospheric emission estimation of Hg, As and Se from coal-fired power plants in China, 2007[J]. Sci Total Environ, 2011, 409(16): 3078-3081.

    2. [2]

      [2] 雒昆利, 张新民, 陈昌和, 陆毅伦. 我国燃煤电厂砷的大气排放量初步估算[J]. 科学通报, 2004, 49(19): 2014-2019. (LUO Kun-li, ZHANG Xin-min, CHEN Chang-he, LU Yi-lun. Preliminary study on estimation of arsenic emission from coal-fired power plant in China[J]. Chinese Science Bulletin, 2004, 49(19): 2014-2019.)

    3. [3]

      [3] YUDOVICH Y E, KETRIS M P. Arsenic in coal: A review[J]. Int J Coal Geol, 2005, 61(3/4): 141-196.

    4. [4]

      [4] 王全海, 刘迎晖, 张军营, 邱建荣, 郑楚光. CaO对烟气中砷的形态和分布的影响[J]. 环境科学学报, 2003, 23(4): 549-551. (WANG Quan-hai, LIU Ying-hui, ZHANG Jun-ying, QIU Jian-rong, ZHENG Chu-guang. Effect of CaO on the speciation of arsenic in flue gases[J]. Acta Scientiae Circumstantiae, 2003, 23(4): 549-551.)

    5. [5]

      [5] CONTRERAS M L, AROSTEGUI J M, ARMESTO L. Arsenic interactions during co-combustion processes based on thermodynamic equilibrium calculations[J]. Fuel, 2009, 88(3): 539-546.

    6. [6]

      [6] HUFFMAN G P, HUGGINS F E, SHAH N, ZHAO J. Speciation of arsenic and chromium in coal and combustion ash by XAFS spectroscopy[J]. Fuel Process Technol, 1994, 39(1/3): 47-62.

    7. [7]

      [7] HUGGINS F E, SHAH N, HUFFMAN G P, ROBERTSON J D. XAFS spectroscopic characterization of elements in combustion ash and fine particulate matter[J]. Fuel Process Technol, 2000, 65-66: 203-218.

    8. [8]

      [8] HUGGINS F E, HUFFMAN G P. X-ray absorption fine structure (XAFS) spectroscopic characterization of emission from combustion of fossil fuels[J]. Int J Soc Mater Eng Resour, 2002, 10(1): 1-13.

    9. [9]

      [9] MAHULI S, AGNIHOTRI R, CHAUK S, GHOSH-DASTIDAR A, FAN L S. Mechanism of arsenic sorption by hydrated lime[J]. Environ Sci Technol, 1997, 31(11): 3226-3231.

    10. [10]

      [10] LI Y, TONG H, ZHOU Y, LI Y, XU X. Simultaneous removal of SO2 and trace As2O3 from flue gas: Mechanism, kinetics study, and effect of main gases on arsenic capture[J]. Environ Sci Technol, 2007, 41(8): 2894-2900.

    11. [11]

      [11] JEGADEESAN G, AL-ABED S R, PINTO P. Influence of trace metal distribution on its leachability from coal fly ash[J]. Fuel, 2008, 87(10/11): 1887-1893.

    12. [12]

      [12] WANG T, WANG J, TANG Y, SHI H, LADWIG K. Leaching characteristic of arsenic and selenium from coal fly ash: Role of calcium[J]. Energy Fuels, 2009, 23(6): 2959-2966.

    13. [13]

      [13] IWASHITA A, SAKAGUCHI Y, NAKAJIMA T, TAKANASHI H, OHKI A, KAMBARA S. Leaching characteristics of boron and selenium for various coal fly ash[J]. Fuel, 2005, 84(5): 479-485.

    14. [14]

      [14] LOW F, ZHANG L. Arsenic emissions and speciation in the oxy-fuel fly ash collected from lab-scale drop-tube furnace[J]. Process Combust Inst, 2013, 34(2): 2877-2884.

    15. [15]

      [15] STERLING R O, HELBLE J J. Reaction of arsenic vapor species with fly ash compounds: Kinetics and speciation of the reaction with calcium silicates[J]. Chemosphere, 2003, 51(10): 1111-1119.

  • 加载中
    1. [1]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    2. [2]

      Xiangli Wang Yuanfu Deng . Teaching Design of Elemental Chemistry from the Perspective of “Curriculum Ideology and Politics”: Taking Arsenic as an Example. University Chemistry, 2024, 39(2): 270-279. doi: 10.3866/PKU.DXHX202308092

    3. [3]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    4. [4]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    5. [5]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    6. [6]

      Xuyu WANGXinran XIEDengke CAO . Photoreaction characteristics and luminescence modulation in phosphine-anthracene-based Au(Ⅰ) and Ir(Ⅲ) complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1513-1522. doi: 10.11862/CJIC.20250113

    7. [7]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    8. [8]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    9. [9]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    10. [10]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    11. [11]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    12. [12]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    13. [13]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    14. [14]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    15. [15]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    16. [16]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    17. [17]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    18. [18]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    19. [19]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    20. [20]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

Metrics
  • PDF Downloads(0)
  • Abstract views(838)
  • HTML views(64)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return