Citation: ZHAO Wei, ZHANG Xiao-qian, ZHOU An-ning, YANG Zhi-yuan. Flotation separation of Shenfu coal macerals and low temperature pyrolysis characteristics of different maceral concentrate[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(5): 527-533. shu

Flotation separation of Shenfu coal macerals and low temperature pyrolysis characteristics of different maceral concentrate

  • Corresponding author: ZHOU An-ning, 
  • Received Date: 12 October 2013
    Available Online: 24 January 2014

    Fund Project: 国家自然科学基金(51174279) (51174279)国家科技重大专项(2011ZX05037-003) (2011ZX05037-003)陕西省"13115"科技创新工程重大科技专项(2008ZDKG-53)。 (2008ZDKG-53)

  • The flotation separation of Shenfu coal macerals and the low temperature pyrolysis characteristics of its concentrates were carried out. The effect of pulp pH value on flotation separation and the impact of maceral enrichment ratio on low temperature pyrolysis were studied. A contrastive analysis was conducted on the characteristics of maceral concentrates in low temperature pyrolysis, providing theory guidance for classifying utilization of coal macerals. The results show that the separation effect of macerals can be manipulated through adjustment of pulp pH value. The more vitrinite exists in the coal sample, the higher the tar yield in low temperature pyrolysis is. But the more inertinite existing in the coal sample highers the semicoke yield. The surface of semicoke from vitrinite concentrates shows clear holes and cracks, and the semicoke structure of inertinite concentrates becomes more dispersive and fragile and an increase in small particles is found. Shenfu coal and its various macerals concentrates show a relative high content of phenols in its tar from low temperature pyrolysis. More phenols, naphthalenes and hydrocarbons exist in the tar from vitrinite concentrates, whereas more cyclophanes and benzenes are found in inertinite tar. The gas compositions of Shenfu coal and its concentrates in low temperature pyrolysis are CH4, H2, CO2 and a bit of C2~5. The relative cumulative yield of CH4, H2, and C2~5 in low temperature pyrolysis gas from vitrinite concentrates is higher than those from inertinite, but the CO and CO2 is lower than that from inertinite. The relative cumulative yield of CH4 and H2 is higher in pyrolysis gas of Shenfu raw coal than that from vitrinite and inertinite.
  • 加载中
    1. [1]

      [1] RACHEL W, MARIA M. Functional group and individual maceral chemistry of high volatile bituminous coals from southern Indiana: Controls on coking[J]. Int J Coal Geol, 2004, 58(3): 181-191.

    2. [2]

      [2] DAS T K. Thermogravimetric characterisation of maceral concentrates of Russian coking coals[J]. Fuel, 2001, 80(1): 97-106.

    3. [3]

      [3] DAI H. Status of direct coal liquefaction research in China[J]. Energy, 1986, 11(11/12): 1225-1229.

    4. [4]

      [4] SONIA H, ALFREDO G, GUILLERMO A, XIMENA G, CLAUDIA U. Coal blend combustion: Link between unburnt carbon in fly ashes and maceral composition[J]. Fuel Process Technol, 2003, 80(3): 209-223.

    5. [5]

      [5] 祁威, 舒新前, 王祖讷, 朱书全, 傅晓恒. 神府煤制水煤浆的研究[J]. 煤炭科学技术, 2003, 31(7): 34-35. (QI Wei, SHU Xin-qian, WANG Zu-ne, ZHU Shu-quan, FU Xiao-heng. Research on coal water mixture prepared with Shenfu coal[J]. Coal Science and Technology, 2003, 31(7): 34-35.)

    6. [6]

      [6] HONAKER R Q, MOHANTY M K, CRELLING J C. Coal maceral separation using column flotation[J]. Miner Eng, 1996, 9(4): 449-464.

    7. [7]

      [7] 林治穆. 煤显微组分的浮选法分离及富集物燃烧性能[J]. 山东矿业学院学报, 1990, 9(1): 74-79. (LIN Zhi-mu. Separation of coal macerals (floation) and observation of coal combustion behavior[J]. Journal of Shandong Mining Institute, 1990, 9(1): 74-79.)

    8. [8]

      [8] SHU X Q, WANG Z N, XU J Q. Separation and preparation of macerals in Shenfu coals by flotation[J]. Fuel, 2002, 81(4): 495-501.

    9. [9]

      [9] HOWER J C, KUEHN K W, PAREKH B K, PETERS W J. Macerals and microlithotype beneficiation in column flotation at the Powell Mountain Coal Mayflower Preparation Plant, Lee County, Virginia[J]. Fuel Process Technol, 2000, 67(1): 23-33.

    10. [10]

      [10] 孙庆雷, 李文, 李保庆. 神木煤显微组分热解特性研究[J]. 中国矿业大学学报, 2001, 30(3): 272-276. (SUN Qing-lei, LI Wen, LI Bao-qing. Study on pyrolysis of maceal conentrate from Shenmu coal[J]. Journal of China University of Mining & Technology, 2001, 30(3): 272-276.)

    11. [11]

      [11] 孙庆雷, 李文, 李东涛, 陈皓侃, 李保庆, 白向飞, 李文华. 神木煤有机显微组分的结构特征与热转化性质的关系[J]. 燃料化学学报, 2003, 31(2): 97-102. (SUN Qing-lei, LI Wen, LI Dong-tao, LI Bao-qing, BAI Xiang-fei, LI Wen-hua. Relationship between structure characteristics and thermal conversion property of Shenmu maceral concentrates[J]. Journal of Fuel Chemistry and Technology, 2003, 31(2): 97-102.)

    12. [12]

      [12] 孙庆雷, 李文, 陈皓侃, 李保庆. 神木煤显微组分加氢热解特性的研究[J]. 燃料化学学报, 2002, 30(1): 12-15. (SUN Qing-lei, LI Wen, CHEN Hao-kan, LI Bao-qing. Study on hydropyrolysis of maceral from Shenmu coal[J]. Journal of Fuel Chemistry and Technology, 2002, 30(1): 12-15.)

    13. [13]

      [13] 常海洲, 曾凡桂, 李文英, 李美芬, 谢克昌. 煤及其显微组分热解过程中的半焦收缩动力学[J]. 物理化学学报, 2008, 24(4): 675-680. (CHANG Hai-zhou, ZENG Fan-gui, LI Wen-ying, LI Mei-fen, XIE Ke-chang. Semicoke contraction kinetics of coal and its macerals in pyrolysis[J]. Acta Physico-Chimica Sinica, 2008, 24(4): 675-680.)

    14. [14]

      [14] 林建英, 李文英, 常丽萍, 谢克昌. 煤岩有机显微组分热解过程中HCN和NH3生产规律的研究[J]. 燃料化学学报, 2004, 32(6): 663-667. (LIN Jian-ying, LI Wen-ying, CHANG Li-ping, XIE Ke-chang. Studies on the formation of HCN and NH3 during coal macerals pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2004, 32(6): 663-667.)

    15. [15]

      [15] 王传格, 张妮, 陈燕. 煤显微组分结构特征及其与热解行为的关系[J]. 煤炭转化, 2011, 34(3): 11-16. (WANG Chuan-ge, ZHANG Ni, CHEN Yan. Relationship between structural characterization of macerals and their thermal behavior[J]. Coal Conversion, 2011, 34(3): 11-16.)

    16. [16]

      [16] DAS T K. Evolution characteristics of gases during pyrolysis of maceral concentrates of Russian coking coals[J]. Fuel, 2001, 80(4): 489-500.

    17. [17]

      [17] ZHAO Y P, HU H Q, JIN L J, HE X F, WU B. Pyrolysis behavior of vitrinite and inertinite from Chinese Pingshuo coal by TG-MS and in a fixed bed reactor[J]. Fuel Process Technol, 2011, 92(4): 780-786.

    18. [18]

      [18] 赵伟, 周安宁, 李远刚. 微波辅助磨矿对煤岩组分解离的影响[J]. 煤炭学报, 2011, 36(1): 140-144. (ZHAO Wei, ZHOU An-ning, LI Yuan-gang. The influence of microwave-assisted grinding on coal macerals dissociation[J]. Journal of China Coal Society, 2011, 36(1): 140-144.)

    19. [19]

      [19] ZHAO W, YANG F S, LI Y G, QU J L, ZHOU A N. The influence of microwave treatment under a hydrogen or methane atmosphere on the flotability of the macerals in Shenfu coals[J]. Mining Science and Technology(China), 2011, 21(6): 761-766.

    20. [20]

      [20] 孙庆雷, 李文, 陈皓侃, 李保庆. 神木煤显微组分热解和加氢热解的焦油组成[J]. 燃料化学学报, 2005, 33(4): 412-415. (SUN Qing-lei, LI Wen, CHEN Hao-kan, LI Bao-qing. Composition of coal tar from pyrolysis and hydropyrolysis of Shenmu coal macerals[J]. Journal of Fuel Chemistry and Technology, 2005, 33(4): 412-415.)

    21. [21]

      [21] 赵伟, 周安宁, 曲建林. 光催化作用下丙酮改性对神府煤煤岩组分表面性质影响的研究[J]. 燃料化学学报, 2011, 39(8): 561-566. (ZHAO Wei, ZHOU An-ning, QU Jian-lin. Study of the influence of the macerals in Shenfu coals modified by acetone under photocatalysis on wettability[J]. Journal of Fuel Chemistry and Technology, 2011, 39(8): 561-566.)

    22. [22]

      [22] 何秀风, 陈小丽, 杜娟, 常丽萍. 宁夏原煤及其显微组分热解过程中气相产物生成的研究[J]. 煤化工, 2009, 37(2): 25-27. (HE Xiu-feng, CHEN Xiao-li, DU Juan, CHANG Li-ping. Study on the gaseous products generated during pyrolysis of Ningxia raw coal and its macerals[J]. Coal Chemical Industry, 2009, 37(2): 25-27.)

    23. [23]

      [23] 赵融芳, 黄伟, 常丽萍, 朱素渝, 谢克昌. 三种不同煤阶煤的模拟热解实验研究[J]. 煤炭转化, 2000, 23(4): 37-41. (ZHAO Rong-fang, HUANG Wei, CHANG Li-ping, ZHU Su-yu, XIE Ke-chang. Pyrolysis simulation of three kinds of coals[J]. Coal Conversion, 2000, 23(4): 37-41.)

  • 加载中
    1. [1]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    2. [2]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    3. [3]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    4. [4]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    5. [5]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    6. [6]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    7. [7]

      Xuyu WANGXinran XIEDengke CAO . Photoreaction characteristics and luminescence modulation in phosphine-anthracene-based Au(Ⅰ) and Ir(Ⅲ) complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1513-1522. doi: 10.11862/CJIC.20250113

    8. [8]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    9. [9]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    10. [10]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    11. [11]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    12. [12]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    13. [13]

      Peipei SunJinyuan ZhangYanhua SongZhao MoZhigang ChenHui Xu . Built-in Electric Fields Enhancing Photocarrier Separation and H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-0. doi: 10.3866/PKU.WHXB202311001

    14. [14]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    15. [15]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    16. [16]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    17. [17]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    18. [18]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    19. [19]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    20. [20]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

Metrics
  • PDF Downloads(0)
  • Abstract views(819)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return