Citation: WANG Yong-gang, ZHENG Pan-pan, YANG Sa-sha, ZHANG Shu, BAI Yan-ping, JIA Xiao-lu. Influence of demineralization using acid wash on N migration and transformation during pyrolysis of Shengli brown coal[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(5): 519-526. shu

Influence of demineralization using acid wash on N migration and transformation during pyrolysis of Shengli brown coal

  • Corresponding author: WANG Yong-gang,  ZHANG Shu, 
  • Received Date: 9 October 2013
    Available Online: 24 December 2013

    Fund Project: 国家科技支撑计划 (2012BAA04B02)。 (2012BAA04B02)

  • This paper is to examine effects of inherent minerals in coal on N migration and transformation during the fast pyrolysis of Shengli brown coal at the temperatures of 773~1 173 K in a bench-scale fluidized-bed quartz reactor. Based on the comparison between raw coal and acid-washed coal, we can find that the alkali Na and alkaline Ca were the key reasons for the difference in N evolutions from raw coal and demineralized coal during the pyrolysis. The Na and Ca could efficiently facilitate the formation of NH3 and inhibit the production of HCN. The metallic species had obvious catalytic effects for the conversion from tar-N to NH3. Meantime, the existence of alkali and alkaline metals has enhanced the cracking reactions of coal char, thus reducing the yields of char and char-N. In addition, the relative amount of pyridinic(N-6) in demineralized coal char was higher than that in raw coal, while less quternary type nitrogen (N-Q) and pyrrolic nitrogen(N-5) were found in the demineralized coal char.
  • 加载中
    1. [1]

      [1] 刘振宇. 煤炭能源中的化学问题[J]. 化学进展, 2000, 12(4): 458-462. (LIU Zhen-yu. Chemistry in coal energy[J]. Progress in Chemistry, 2000, 12(4): 458-462.)

    2. [2]

      [2] 尤先锋, 刘生玉, 吴争鸣, 任军, 谢克昌. 煤热解过程中氮和硫化合物分配及生成机理[J]. 煤炭转化, 2001, 24(3): 1-5. (YOU Xian-feng, LIU Sheng-yu, WU Zheng-ming, REN Jun, XIE Ke-chang. Study of nitrogen and sulfur distribution and functional forms during coal pyrolysis[J]. Coal Conversion, 2001, 24(3): 1-5.)

    3. [3]

      [3] 冯志华, 常丽萍, 任军, 谢克昌. 煤热解过程中氮的分配及存在状态的研究进展[J]. 煤炭转化, 2000, 23(3): 6-12. (FENG Zhi-hua, CHANG Li-ping, REN Jun, XIE Ke-chang. Study of nitrogen distribution and functional forms during coal pyrolysis[J]. Coal Conversion, 2000, 23(3): 6-12.)

    4. [4]

      [4] WU Z, SUGIMOTO Y, KAWASHIMA H. Effect of demineralization and catalyst addition on N2 formation during coal pyrolysis and on char gasification[J]. Fuel, 2003, 82(15/17): 2057-2064.

    5. [5]

      [5] TSUBOUCHI N, OHTSUKA Y. Formation of N2 during pyrolysis of Ca-loaded coals[J]. Fuel, 2002, 81(11/12): 1423-1431.

    6. [6]

      [6] OHTSUKA Y, WU Z, EDWARD F. Effect of alkali and alkaline metals on nitrogen release during temperature programmed pyrolysis of coal[J]. Fuel, 1997, 76(14/15): 1361-1367.

    7. [7]

      [7] TSHBOUCHI N, OHTSUKA Y. Nitrogen release during high temperature pyrolysis of coals and catalytic role of calcium in N2 formation[J]. Fuel, 2002, 81(18): 2335-2342.

    8. [8]

      [8] WU Z H. The influence of mineral matter and catalyst on nitrogen release during slow pyrolysis of coal and related material: A comparative study[J]. Energy Fuels, 2002, 16(2): 451-456.

    9. [9]

      [9] FRIEBEL J, KOPSEL R F. The fate of nitrogen during pyrolysis of German low rank coals-A parameter study[J]. Fuel, 1999, 78(8): 923-932.

    10. [10]

      [10] 赵娅鸿, 常丽萍, 谢克昌, 李灵芝. 矿物质对煤转化过程中含氮物迁移的影响[J]. 现代化工, 2004, 24(1): 11-15. (ZHAO Ya-hong, CHANG Li-ping, XIE Ke-chang, LI Ling-zhi. Effect of mineral matter on transformation of nitrogen during coal conversion[J]. Modern Chemical Industry, 2004, 24(1): 11-15.)

    11. [11]

      [11] 常丽萍, 赵娅鸿. 煤中固有矿物质在热解过程中对氮释放的影响[J]. 煤炭转化, 2005, 28(2): 36-38. (CHANG Li-ping, ZHAO Ya-hong. Influence of inherent minerals on nitrogen release during coal pyrolysis[J]. Coal Conversion, 2005, 28(2): 36-38.)

    12. [12]

      [12] 赵娅鸿, 林建英, 常丽萍, 赵炜, 谢克昌. 矿物质对煤热解气化过程中NH3形成的影响[J]. 环境化学, 2004, 23(1): 26-30. (ZHAO Ya-hong, LIN Jian-ying, CHANG Li-ping, ZHAO Wei, XIE Ke-chang. The effect of mineral matter on the NH3 formation during coal pyrolysis and gasification[J]. Environmental Chemistry, 2004, 23(1): 26-30.)

    13. [13]

      [13] 赵娅鸿. 矿物质对煤热解/气化过程中氮迁移的影响[D]. 太原: 太原理工大学, 2003. (ZHAO Ya-hong. Effect of minerals on transformation of nitrogen during coal pyrolysis/gasification[D]. Taiyuan: Taiyuan University of Technology, 2003.)

    14. [14]

      [14] 徐明艳, 崔银萍, 秦玲丽, 常丽萍, 谢克昌. 含铁煤热解过程中HCN形成的主要影响因素分析[J]. 燃料化学学报, 2007, 35(1): 5-9. (XU Ming-yan, CUI Yin-ping, QIN Ling-li, CHANG Li-ping, XIE Ke-chang. Key factors influencing the release and formation of HCN during iron-containing coal pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2007, 35(1): 5-9.)

    15. [15]

      [15] 徐秀峰, 顾永达, 陈诵英. 铁催化剂对煤热解过程中氮元素迁移的影响[J]. 燃料化学学报, 1998, 26(1): 18-23. (XU Xiu-feng, GU Yong-da, CHEN Song-ying. Effect of iron addition on transformation of nitrogen during coal pyrolysis[J]. Journal of Fuel Chemistry and Technology, 1998, 26(1): 18-23.)

    16. [16]

      [16] LI C Z. Some recent advances in the understanding of the pyrolysis and gasification behavior of Victorian brown coal[J]. Fuel, 2007, 86(12): 1664-1683.

    17. [17]

      [17] WOOD B J, SANCIER K M. The mechanism of the catalytic gasification of coal char: A critical review[J]. Catal Rev Sci Eng, 1984, 26(2): 233-279.

    18. [18]

      [18] VERNAGLIA B A, WORNAT M J, LI C Z, NELSON P F. The effects of pyrolysis temperature and ion-exchanged metals on the composition of brown coal tars produced in a fluidized-bed reactor[C]//Symposium (International) on Combustion. Amsterdam: Elsevier Press, 1996, 26(2): 3287-3294.

    19. [19]

      [19] LI C Z. Advances in the science of Victorian brown coal[M]. Access Online via Elsevier, 2004: 286-350.

    20. [20]

      [20] 赵明举, 谢克昌, 凌大琦. 煤中矿物质在煤气化中的应用[J]. 煤炭转化, 1989, 1: 23-29. (ZHAO Ming-ju, XIE Ke-chang, LING Da-qi. The application of the minerals in coal during coal gasification[J]. Coal Conversion, 1989, 1: 23-29.)

    21. [21]

      [21] 王磊, 余江, 尹丰魁, 王冬梅. 钙元素对褐煤热解和气化特性的影响[J]. 煤化工, 2012, (1): 27-30. (WANG Lei, YU Jiang, YIN Feng-kui, WANG Dong-mei. Impact of calcium on pyrolysis and gasification characteristics of brown coal[J]. Coal Chemical Industry, 2012, (1): 27-30.)

    22. [22]

      [22] ZHANG S, LI C Z. Volatilization and catalytic effects of alkali and alkaline earth metallic species during the cytolysis and gasification of Victorian brown coal. Part IX. Effects of volatile-char interactions on char-H2O and char-O2 reactivates[J]. Fuel, 2011, 90(4): 1655-1661.

    23. [23]

      [23] 张书, 白艳萍, 郑盼盼, 陈绪军, 许德平, 王永刚. 升温速率对胜利褐煤热解过程中N迁移转化的影响[J]. 燃料化学学报, 2013, 41(10): 1153-1159. (ZHANG Shu, BAI Yan-ping, ZHENG Pan-pan, CHEN Xu-jun, XU De-ping, WANG Yong-gang. Effect of heating rate on the migration and transformation of N during pyrolysis of Shengli brown coal[J]. Journal of Fuel Chemistry and Technology, 2013, 41(10): 1153-1159.)

    24. [24]

      [24] 秦玲丽, 崔银萍, 徐明艳, 常丽萍. 煤氮催化转化研究中的主要影响因素分析[J]. 现代化工, 2006, 26(2): 382-385. (QIN Ling-li, CUI Yin-ping, XU Ming-yan, CHANG Li-ping. Main influencing factors in the research on catalytic conversion of coal-nitrogen[J]. Modern Chemical Industry, 2006, 26(2): 382-385.)

    25. [25]

      [25] LI C Z, LI L T. Formation of NOx and SOx precursors during the cytolysis of coal and biomass. Part Ⅲ. Further discussion on the formation of HCN and NH3 during cytolysis[J]. Fuel, 2002, 79(15): 1899-1906.

    26. [26]

      [26] 朱廷钰, 汤忠, 黄戒介, 张建民, 王洋. 煤温和气化特性的热重研究[J]. 燃料化学学报, 1999, 27(5): 420-423. (ZHU Ting-yu, TANG Zhong, HUANG Jie-jie, ZHANG Jian-min, WANG Yang. Thermo-gravimetric study of coal mild gasification[J]. Journal of Fuel Chemistry and Technology, 1999, 27(5): 420-423.)

    27. [27]

      [27] QUYN D M, WU H, HAYASHI J, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part IV. Catalytic effects of NaCl and ion-exchangeable Na in coal on char reactivity[J]. Fuel, 2003, 82(5): 587-593.

    28. [28]

      [28] TSUBOUCHI N, OHTSUKA Y. Nitrogen chemistry in coal cytolysis: Catalytic roles of metal captions in secondary reactions of volatile nitrogen and char nitrogen[J]. Fuel Process Technol, 2008, 89(4): 379-390.

    29. [29]

      [29] SATHE C, PANG Y, LI C Z. Effects of heating rate and ion-exchangeable captions on the pyrolysis yields from a Victorian brown coal[J]. Energy Fuels, 1999, 13(3): 748-755.

    30. [30]

      [30] QUYN D M, WU H, LI C Z. Volatilization and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part I. Volatilization of Na and Cl from a set of NaCl-loaded samples[J]. Fuel, 2002, 81(2): 143-149.

    31. [31]

      [31] 赵新法, 杨黎燕, 石振海. 煤中矿物质在气化反应中的催化作用分析[J]. 煤炭技术, 2005, 24(1): 103-105. (ZHAO Xin-fa, YANG Li-yan, SHI Zhen-hai. Analysis on catalysis of mineral in coal gasification[J]. Coal Technology, 2005, 24(1): 103-105.)

    32. [32]

      [32] XIE J J, YANG X M, LV X S, DING T L, YAO J Z, LIN W G. Progress on transformation behavior of sulfur and nitrogen during coal pyrolysis[J]. Chem Ind Eng Prog, 2004, 23(11): 1214-1218.

    33. [33]

      [33] 闫晓, 车得福, 徐通模. 煤热解过程中焦炭氮变化规律的实验研究[J]. 西安交通大学学报, 2004, 38(9): 980-984. (YAN Xiao, CHE De-fu, XU Tong-mo. Experimental investigation on char nitrogen conversion during coal pyrolysis[J]. Journal of Xi'an Jiaotong University, 2004, 38(9): 980-984.)

    34. [34]

      [34] WU Z, SUGIMOTO Y, KAWASHIMA H. The influence of mineral matter and catalyst on nitrogen release during slow cytolysis of coal and related material: A comparative study[J]. Energy Fuels, 2002, 16(2): 451-456.

    35. [35]

      [35] KAPTEIGIN F, MOULIGIN J A, MATZNER S, BOEHMB H P. The development of nitrogen functionality in model chars during gasification in CO2 and O2[J]. Carbon, 1999, 37(7): 1143-1150.

    36. [36]

      [36] SCHMIERS H, FRIEBEL J, STREUBEL P, HESSEB R, KÖPSELA R. Change of chemical bonding of nitrogen of polymeric N-heterocyclic compounds during pyrolysis[J]. Carbon, 1999, 37(12): 1965-1978.

    37. [37]

      [37] FRIEBEL J, KOPSEL R F W. The fate of nitrogen during pyrolysis of German low rank coals-A parameter study[J]. Fuel, 1999, 78(8): 923-932.

    38. [38]

      [38] 常丽萍. 煤热解、气化过程中含氮化合物的生成与释放研究[D]. 太原: 太原理工大学, 2004. (CHANG Li-ping. The study of generation and release of nitrogen compounds during coal pyrolysis/gasification[D]. Taiyuan: Taiyuan University of Technology, 2004.)

  • 加载中
    1. [1]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    2. [2]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    5. [5]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    6. [6]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    7. [7]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    8. [8]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    9. [9]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    10. [10]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    11. [11]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    12. [12]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    13. [13]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    14. [14]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    15. [15]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    16. [16]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    17. [17]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    18. [18]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    19. [19]

      Caiyun Jin Zexuan Wu Guopeng Li Zhan Luo Nian-Wu Li . 用于金属锂电池的磷腈基阻燃人工界面层. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-. doi: 10.1016/j.actphy.2025.100094

    20. [20]

      Haiyu Zhu Zhuoqun Wen Wen Xiong Xingzhan Wei Zhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078

Metrics
  • PDF Downloads(0)
  • Abstract views(486)
  • HTML views(81)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return