Citation: LI Wei-min, ZHAO Qiang, ZUO Tong-mei, WEI Guo-hui, LU Zhao-yang, PU Guo-jia. Synthesis of poly(oxymethylene) dimethy ethers catalyzed by acidic functionalized ionic liquids[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(4): 501-506. shu

Synthesis of poly(oxymethylene) dimethy ethers catalyzed by acidic functionalized ionic liquids

  • Corresponding author: LI Wei-min, 
  • Received Date: 15 August 2013
    Available Online: 24 October 2013

    Fund Project: 江苏省科技支撑计划项目(BE2012822) (BE2012822)江苏省科技厅工程技术中心建设项目(BM2010095,BM2010132)。 (BM2010095,BM2010132)

  • Poly(oxymethylene) dimethyl ethers (PODE n, n>1) were synthesized by the condensation of trioxymethylene (TR) and methanol (MeOH) over the functionalized ionic liquids like [Hnmp]HSO4, [Hnmp]H2PO4, [Hnmp]PTSA and [PyN(CH2)3SO3H]HSO4; the effects of the catalyst amount, raw materials ratio, temperature, pressure and time on the reaction behaviors were investigated. The results showed that the catalytic activity of ionic liquid is related to its acidity. [PyN(CH2)3SO3H]HSO4 exhibits the highest catalytic activity; under the optimum reaction conditions, i.e. [PyN(CH2)3SO3H]HSO4 amount of 2.0%, molar ratio of MeOH to TR of 2.0, 110 ℃, 2.0MPa and reaction time of 6h, the conversion of TR and selectivity to PODE3~8 reach 97.69% and 32.54%, respectively. Moreover, the ionic liquid [PyN(CH2)3SO3H]HSO4 can be spontaneously separated from product phase after the reaction.
  • 加载中
    1. [1]

      [1] JAKOB B, MARKUS S, ECKHARD S, ECKHARD S, HANS H. Poly(oxymethylene) dimethyl ethers as components of tailored diesel fuel: Properties, synthesisand purification concepts[J]. Fuel, 2010, 89(11): 3315-3319.

    2. [2]

      [2] 李晓云, 李晨, 于海斌. 柴油添加剂聚甲醛二甲醚的应用研究进展[J]. 化工进展, 2008, 27(增刊): 317-319. (LI Xiao-yun, LI Chen, YU Hai-bin. Applied research progress of diesel fuel additive polyoxymethylene dimethyl ethers[J]. Chemical Industry and Engineering Progress, 2008, 27(supplement): 317-319.)

    3. [3]

      [3] FLEISCH T H, SILLS R A. Large-scale gas conversion through oxygenates: Beyond GTL-FT[J]. Stud Surf Sci Catal, 2004, 147: 31-36.

    4. [4]

      [4] 史高峰, 陈英赞, 陈学福, 张梅, 张兴潜. 聚甲氧基二甲醚研究进展[J]. 天然气化工, 2012, 37(2): 74-78. (SHI Gao-feng, CHEN Ying-zan, CHEN Xue-fu, ZHANG Mei, ZHANG Xing-qian. Research progress in polyoxymethylene dimethyl ethers[J]. Natural Gas Chemical Industry, 2012, 37(2): 74-78.)

    5. [5]

      [5] RENATA P, MARIO M. A process for the selective production of dialkyl-polyformals: EP, 1505049A. 2005-09-02.

    6. [6]

      [6] 舍林H, 施特勒费尔E, 平科斯R, 豪纳特A, 特贝恩G-D, 哈塞H, 布拉戈夫S. 制备聚甲醛二甲醚的方法: CN, 101198576A. 2007-10-03. (SCHELLING H, STROEFER E, PINKOS R, HAUNERT A, TEBBEN G D, HASSE H, BLAGOV S. Method for producing polyxoymethylene dimethyl ethers: CN, 101048357A. 2007-10-03.)

    7. [7]

      [7] 高晓晨, 杨为民, 刘志成, 高焕新. HZSM-5分子筛用于合成聚甲醛二甲醚[J]. 催化学报, 2012, 33(8): 1389-1394. (GAO Xiao-chen, YANG Wei-min, LIU Zhi-cheng, GAO Huan-xin. Catalytic performance of HZSM-5 molecular sieve for synthesizing of polyoxymethylene dimethyl ethers[J]. Chinese Journal of Catalysis, 2012, 33(8): 1389-1294.)

    8. [8]

      [8] 赵启, 王辉, 秦张峰, 吴志伟, 武建兵, 樊卫斌, 王建国. 分子筛催化剂上甲醇与三聚甲醛缩合制聚甲醛二甲醚[J]. 燃料化学学报, 2011, 39(12): 918-923. (ZHAO Qi, WANG Hui, QIN Zhang-feng, WU Zhi-wei, WU Jianbing, FAN Wei-bin, WANG Jian-guo. Synthesis of polyoxymethylene dimethyl ethers from methanol and trioxymethylene with molecular sieves as catalysts[J]. Journal of Fuel Chemistry and Technology, 2011, 39(12): 918-923.)

    9. [9]

      [9] 陈婷, 王亮, 陈群, 何明阳. 大孔强酸性阳离子交换树脂催化甲缩醛和三聚甲醛合成聚甲醛二甲醚的研究[J]. 离子交换与吸附, 2012, 28(5): 456-462. (CHEN Ting, WANG Liang, CHEN Qun, HE Ming-yang. Synehesis of polyoxymethylene dimethyl ethers from dimethoxymethane and trioxymethylene with cation resin as catalyst[J]. Ion Exchange and Adsorption, 2012, 28(5): 456-462.)

    10. [10]

      [10] 刘现立, 田恒水, 王贺玲, 潘冬冬. 甲醛低聚反应研究[J]. 广东化工, 2009, 36(9): 23-25. (LIU Xian-li, TIAN Heng-shui, WANG He-ling, PAN Dong-dong. Study on polymerization of formaldehyde[J]. Guangdong Chemical Industry, 2009, 36(9): 23-25.)

    11. [11]

      [11] 赵强, 李为民, 陈清林. Brnsted酸性离子液体催化合成聚甲醛二甲醚的研究[J]. 燃料化学学报, 2013, 41(4): 463-468. (ZHAO Qiang, LI Wei-min, CHEN Qing-lin. Synthesis of poly(oxymethylene) dimethyl ethers catalyzed by Brnsted acid ionic liquids[J]. Journal of Fuel Chemistry and Technology, 2013, 41(4): 463-468.)

    12. [12]

      [12] 黄宝华, 汪艳飞, 杜志云, 张焜, 方岩雄, 周蓓蕾, 黎子进. 酸性离子液体的合成和光谱表征[J]. 分析测试学报, 2007, 26(4): 478-483. (HUANG Bao-hua, WANG Yan-fei, DU Zhi-yun, ZHANG Kun, FANG Yan-xiong, ZHOU Bei-lei, LI Zi-jin. Synthesis and spectroscopic characterization of several acidic ionic liquids[J]. Journal of Instrumental Analysis, 2007, 26(4): 478-483.)

    13. [13]

      [13] 刘伟伟, 将平平, 陈旻, 魏猛. Brnsted酸性离子液体催化合成油酸甲酯的研究[J]. 中国油脂, 2009, 34(7): 47-50. (LIU Wei-wei, JIANG Ping-ping, CHEN min, WEI MENG. Synehesis of methyl oleate catalyzed by Bronsted acid ionic liquids[J]. China Oils and Fats, 2009, 34(7): 47-50.)

    14. [14]

      [14] 吴芹, 董斌琦, 韩明汉, 左宜赞, 金涌. 新型Brnsted酸性离子液体的合成与表征[J]. 光谱学与光谱分析, 2007, 10(27): 2027-2031. (WU Qin, DONG Bin-qi, HAN Ming-han, ZUO Yi-zan, JIN Yong. Synthesis and characterization of novel Brnsted acidic ionic liquids[J]. Spectroscopy and Spectral Analysis, 2007, 10(27): 2027-2031.)

  • 加载中
    1. [1]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    2. [2]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    3. [3]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    4. [4]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    5. [5]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    6. [6]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    7. [7]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    8. [8]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

    9. [9]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    10. [10]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    13. [13]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    14. [14]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    15. [15]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    16. [16]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    17. [17]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    18. [18]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    19. [19]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

    20. [20]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

Metrics
  • PDF Downloads(0)
  • Abstract views(441)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return