Citation: ZHAO Yu, MA Yan, LI Ting, BO Xiao, WANG Jun-wen, LI Peng, ZHONG Li-ping, SUN Yan-ping. Treatment of sewage and synchronous electricity generation characteristics by microbial fuel cell[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(4): 481-486. shu

Treatment of sewage and synchronous electricity generation characteristics by microbial fuel cell

  • Corresponding author: SUN Yan-ping, 
  • Received Date: 23 December 2013
    Available Online: 12 February 2014

    Fund Project: 国家自然科学基金(21176168) (21176168)山西省留学基金(2012081016)。 (2012081016)

  • A microbial fuel cell (MFC) was built using glucose as simulated domestic wastewater, using carbon felt as anode and activated anaerobic sludge as inoculum, which came from a sewage treatment plant. The sewage was treated and electricity was generated synchronously. The effect of substrate concentration and operating temperature on electrode process kinetics was examined. The relationship among electrochemical activity of microbes, charge transfer resistance, anode potential, and capacity of producing electricity was explored. The main conclusions about sewage-fuel MFC are summarized as follows: The relationship between the peak power density and substrate concentration followed Monod enzyme kinetics equation: P=Pmaxc/(ks+c), with a maximum power density (Pmax) of 320.2 mW/m2 and half-saturation concentration (ks) of 138.5 mg/L. When the initial glucose concentration is less than 2 000 mg/L, the reaction follows the first order kinetics equation: -dcA/dt=kcA, k=0.262 h-1. Increasing the temperature from 20 to 35 ℃, the charge transfer resistance decreases from 361.2 to 36.2 Ω, the anode electrode potential also decreases, while peak power density increases from 80.6 to 183.3 mW/m2. At 45 ℃, the electrochemical activity of microbes declines, and the peak power density decreases to 36.8 mW/m2. After operating steadily for 6 h, coulombic efficiency and COD removal efficiency reach a maximum of 44.6% and 49.2%, respectively, at 35 ℃ with the substrate concentration of 1 500 mg/L.
  • 加载中
    1. [1]

      [1] BOND D R, HOLMES D E, TENDER L M, LOVLEY D R. Electrode-reducing microorganisms that harvest energy from marine sediments[J]. Science, 2002, 295(5554): 483-485.

    2. [2]

      [2] KIM B H , PARK H S, KIM H J, KIM G T, CHANG I S, LEE J, PHUNG N T. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell[J]. Appl Microbiol Biot, 2004, 63(6): 672-681.

    3. [3]

      [3] LIU H, RAMNARAYANAN R, LOGAN B E. Production of electricity during wastewater treatment using a single chamber microbial fuel cell[J]. Environ Sci Technol, 2004, 38(7): 2281-2285.

    4. [4]

      [4] ZHANG B G, ZHAO H Z, ZHOU S G, SHI C H, WANG C,NI J R. A novel UASB-MFC-BAF integrated system for high strength molasses wastewater treatment and bioelectricity generation[J]. Bioresour Technol, 2009, 100(23): 5687-5693.

    5. [5]

      [5] MOHAN S V, MOHANAKRSHNA G, SARMA P N. Composite vegetable waste as renewable resource for bioelectricity generation through non-catalyzed open-air cathode microbial fuel cell[J]. Bioresour Technol, 2010, 101(3): 970-976.

    6. [6]

      [6] RODRIGO M A, CANIZARES P, LOBATO J, PAZ R, SEZ C, LINARES J J. Production of electricity from the treatment of urban waste water using a microbial fuel cell[J]. J Power Sources, 2007, 169(1): 198-204.

    7. [7]

      [7] MIN B, LOGAN B E. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell[J]. Environ Sci Technol, 2004, 38(21): 5809-5814.

    8. [8]

      [8] ZUO Y, MANESS P C, LOGAN B E. Electricity production from steam-exploded corn stover biomass[J]. Energy Fuel, 2006, 20(4): 1716-1721.

    9. [9]

      [9] GIL G C, CHANGI S, KIM B H, KIM M, JANG J K, PARK H S, KIM H J. Operational parameters affecting the performance of a mediator-less microbial fuel cell[J]. Biosensors Bioelectron, 2003, 18(4): 327-334.

    10. [10]

      [10] GONZALEZ DEL CAMPO A, LOBATO J, CAIZARESB P, RODRIGO M A, FERNANDEZ MORALESA F J. Short-term effects of temperature and COD in a microbial fuel cell[J]. Appl Energy, 2013, 101: 213-217.

    11. [11]

      [11] MIN B, ROMN O B, ANGELIDAKI I. Importance of temperature and anodic medium composition on microbial fuel cell (MFC) performance[J]. Biotechnol Lett, 2008, 30(7): 1213-1218.

    12. [12]

      [12] JADHAV G S, GHANGREKAR M M. Performance of microbial fuel cell subjected tovariation in pH, temperature, external load and substrate concentration[J]. Bioresour Technol, 2009, 100(2): 717-723.

    13. [13]

      [13] LIU H, CHENG S, LOGAN B E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration[J]. Environ Sci Tech, 2005, 39(14): 5488-5493.

    14. [14]

      [14] LARROSA-GUERRERO A, SCOTT K, HEAD I M, MATEO F, GINESTA A, GODINEZ C. Effect of temperature on the performance of microbial fuel cells[J]. Fuel, 2010, 89(12): 3985-3994.

    15. [15]

      [15] PATIL S A, HARNSICH F, KAPADNIS B, SCHRDER U. Electroactive mixed culture biofilms in microbial bioelectrochemical systems: The role of temperature for biofilm formation and performance[J]. Biosensors Bioelectron, 2010, 26(2): 803-808.

    16. [16]

      [16] 赵煜, 李鹏, 王晓斌, 孙彦平. 微生物燃料电池中生物膜成长对电池电化学性能的影响[J]. 燃料化学学报, 2012, 40(8): 967-972.

    17. [17]

      (ZHAO Yu, LI Peng, WANG Xiao-bin, SUN Yan-ping. Influence of initial biofilm growth on electrochemical behavior in dual-chambered mediator microbial fuel cell[J]. Journal of Fuel Chemistry and Technology, 2012, 40(8): 967-972.)

    18. [18]

      [17] LOGAN B E, FLEURY R C. Multiphasic kinetics can be an artifact of the assumption of saturable kinetics for microorganisms[J]. Mar Ecol Prog Ser, 1993, 102: 115-124.

    19. [19]

      [18] KIM J R,PREMIER G C,HAWKES F R,RODRGUEZB J, DINSDALEB R M, GUWYB A J. Modular tubular microbial fuel cells for energy recovery during sucrose wastewater treatment at low organic loading rate[J]. Bioresour Technol, 2010, 101(4): 1190-1198.

    20. [20]

      [19] HERNANDEZ M E, KAPPLER A, NEWMAN D K. Phenazines and other redox-active antibiotics promote microbial mineral reduction[J]. Appl Environ Microbio, 2004, 70(2): 921-928.

    21. [21]

      [20] GRALNICK J A, NEWMAN D K. Extracellular respiration[J]. Mol Microbio, 2007, 65(1): 1-11.

    22. [22]

      [21] RABAEY K, BOON N, SICILIANO S D, VERHAEGE M, VERSTRAETE W. Biofuel cells select for microbial consortia that self-mediate electron transfer[J]. Appl Environ Microbio, 2004, 70(9): 5373-5382.

    23. [23]

      [22] CHEN S A, LIU H, LOGAN B E. Power densities using different cathode catalysts(Pt and CoTMPP) and polymer binders(Nafion and PTFE) in single chamber microbial fuel cells[J]. Environ Sci Technol, 2006, 40(1): 364-369.

    24. [24]

      [23] [JP4]LOGAN B E, HAMELERS B, ROZENDAL R. Microbial fuel cells: Methodology and technology[J]. Environ Sci Technol, 2006, 40(17): 5181-5192.[JP]

    25. [25]

      [24] [JP5]SCHRDER U. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency[J]. Phys Chem Chem Phys, 2007, 9(21): 2619-2629.[JP]

    26. [26]

      [25] AELTERMAN P, FREGUIA S, KELLER J, VERSTRARTE W, RABAEY K. The anode potential regulates bacterial activity in microbial fuel cells[J]. Appl Microbio Biotechnol, 2008, 78(3): 409-418.

  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    3. [3]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    4. [4]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    5. [5]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    6. [6]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    7. [7]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    8. [8]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    9. [9]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    10. [10]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    11. [11]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    12. [12]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    13. [13]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    14. [14]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    15. [15]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    16. [16]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    17. [17]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    18. [18]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    19. [19]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    20. [20]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

Metrics
  • PDF Downloads(0)
  • Abstract views(498)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return