Citation: LIU Xue-nan, DENG Chao, GAO Ying, WU Bing. Preparation of graphene and graphene supported Pd catalysts for formic acid electrooxidation[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(4): 476-480. shu

Preparation of graphene and graphene supported Pd catalysts for formic acid electrooxidation

  • Corresponding author: WU Bing, 
  • Received Date: 22 November 2013
    Available Online: 11 January 2014

    Fund Project: 黑龙江省自然科学基金(B201002) (B201002)哈尔滨市科技创新人才专项资金(2010RFXXG018) (2010RFXXG018)黑龙江省高校科技创新团队建设计划(2011TD010)。 (2011TD010)

  • Two kinds of graphene GN-1 and GN-2 with significantly increased specific surface area were obtained from nano graphite by different methods. The morphology and pore size distribution of GN-1 and GN-2 also have great differences. Using these two kinds of graphene as supports, Pd catalysts were prepared and designed as Pd/GN-1 and Pd/GN-2. The electrochemical specific surface area of Pd/GN-1 and Pd/GN-2 catalysts are 34.66 and 71.25 m2/g. The catalytic activities of Pd/GN-1 and Pd/GN-2 during the formic acid electrooxidation reaction are greatly improved compared with the Pd catalyst supported by nano graphite. The peak current densities of formic acid oxidation on Pd/GN-1 and Pd/GN-2 are 66.0 and 95.8 mA/cm2. The Pd/GN-1 and Pd/GN-2 catalysts also have good stability for formic acid electrooxidation.
  • 加载中
    1. [1]

      [1] 杨改秀, 李颖, 袁振宏, 孔晓英, 李婷, 陈冠益, 陆天虹, 孙永明. 炭载Pd-P催化剂对甲酸氧化的电催化性能[J]. 燃料化学学报, 2013, 41(11): 1367-1370. (YANG Gai-xiu, LI Ying, YUAN Zhen-hong, KONG Xiao-ying, LI Ting, CHEN Guan-yi, LU Tian-hong, SUN Yong-ming. Electrocatalytic performance of the carbon supported Pd-P catalyst for formic acid oxidation[J]. Journal of Fuel Chemistry and Technology, 2013, 41(11): 1367-1370.)

    2. [2]

      [2] ZHANG L, TIAN R, HU P, MA Y, XIA D. A gold-nickel alloy as anodic catalyst in a direct formic acid fuel cell[J]. Rare Metal Mat Eng, 2010, 39(6): 0945-0948.

    3. [3]

      [3] 尹 蕊, 邬 冰, 高 颖. 活性炭和石墨混合载体的Pt 催化剂(Pt/CG)对乙醇氧化电催化活性的影响[J]. 燃料化学学报, 2006, 34(4): 475-478. (YIN Rui, WU Bing, GAO Ying. Effect of mixed supporter of activated carbon and graphite on electrocatalytic activity of Pt catalyst for ethanol oxidation[J]. Journal of Fuel Chemistry and Technology, 2006, 34(4): 475-478.)

    4. [4]

      [4] WANG J Y, KANG Y Y, YANG H, CAI W B. Boron-doped palladium nanoparticles on carbon black as a superior catalyst for formic acid electro-oxidation[J]. J Phys Chem C, 2009, 113(19): 8366-8372.

    5. [5]

      [5] LUKASZEWSKI M, CZERWINSKI A. Anodic oxidation of Pd alloys with Pt and Rh[J]. J Alloys Compounds, 2009, 473(1/2): 220-226.

    6. [6]

      [6] ZANG L L, TANG Y W, BAO J C, LU T H, LI C. A carbon-supported Pd-P catalyst as the anodic catalyst in a direct formic acid fuel cell[J]. J Power Sources, 2006, 162(1): 177-179.

    7. [7]

      [7] 杨苏东, 梁彦瑜, 温祝亮, 宋启军, 张校刚. 不同载体负载 Pd 催化剂对甲酸的电催化氧化活性比较[J]. 电化学, 2011, 17(2): 175-179. (YANG Su-dong, LIANG Yan-yu, WEN Zhu-liang, SONG Qi-jun, ZHANG Xiao-gang. Comparison of catalytic performance on different materials supported Pd catalysts for formic acid oxidation[J]. Electrochemistry, 2011, 17(2): 175-179.)

    8. [8]

      [8] 温祝亮, 杨苏东, 宋启军, 郝 亮, 张校刚. 石墨烯负载高活性Pd催化剂对乙醇的电催化氧化[J]. 物理化学学报, 2010, 26(6): 1570-1574. (WEN Zhu-liang, YANG Su-dong, SONG Qi-jun, HAO Liang, ZHANG Xiao-gang. High activity of Pd/graphene catalysts for ethanol electrocatalytic oxidation[J]. Acta Physico-Chimica Sinica, 2010, 26(6): 1570-1574.)

    9. [9]

      [9] WASZCZUK P, BARNARD T M, RICE C, MASEL R I, WIECKOWSKI A. A nanoparticle catalyst with superior activity for electrooxidation of formic acid[J]. Electrochem Commun, 2002, 4(7): 599-603.

    10. [10]

      [10] YANG J, TIAN C G, WANG L, FU H G. An effective strategy for small-sized and highly-dispersed palladium nanoparticles supported on graphene with excellent performance for formic acid oxidation[J] . J Mater Chem, 2011, 21: 3384-3390.

    11. [11]

      [11] AI W, ZHOU W W, DU Z Z, YU T, HUANG W. Benzoxazole and benzimidazole heterocycle-grafted graphene for high-performance supercapacitor electrodes[J]. J Mater Chem, 2012, 22: 23439-23446.

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    3. [3]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    4. [4]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    5. [5]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    6. [6]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    9. [9]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    10. [10]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    11. [11]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    12. [12]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    13. [13]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    14. [14]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    15. [15]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    16. [16]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    17. [17]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    18. [18]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    19. [19]

      Jiahao LuXin MingYingjun LiuYuanyuan HaoPeijuan ZhangSonghan ShiYi MaoYue YuShengying CaiZhen XuChao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045

    20. [20]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

Metrics
  • PDF Downloads(0)
  • Abstract views(441)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return