Citation:
ZHANG Rong, ZHANG Jing, MA Fei, WANG Wen-yang, LI Rui-feng. Preparation of Mn-N-C catalyst and its electrocatalytic activity for the oxygen reduction reaction in alkaline medium[J]. Journal of Fuel Chemistry and Technology,
;2014, 42(4): 467-475.
-
Chitosan salicylaldehyde Schiff-base manganese complex (Mn-CS-sal) was synthesized by a simple chemical method and then supported on graphite carbon; the graphite-supported Mn-CS-sal (Mn-CS-sal/C) was heat-treated at different temperatures (t) to obtain the Mn-N-C catalysts (Mn-N-C-t, t=200, 400, 600, 800, 1 000 ℃). The electrocatalytic activity of Mn-N-C catalysts in the oxygen reduction reaction (ORR) was investigated and their structure and composition were characterized by Fourier Transform Infrared (FT-IR) spectrum, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicated that all the Mn-N-C catalysts are highly active in ORR, whereas the Mn-N-C-600 catalyst heat-treated at 600 ℃ exhibits the highest ORR activity. The excellent ORR activity of the Mn-N-C catalysts in alkaline media should be attributed to their Mn-N-C configuration. Two important kinetic parameters, i.e. the overall ORR electron transfer number (n) and electron transfer coefficiency (αnα), were determined by the cyclic voltammetry method. The Mn-N-C-600 catalyst shows an overall electron transfer number of 3.63 for ORR, suggesting that the catalytic ORR is via a mixture of 2- and 4-electron transfer pathways, but dominated by the 4-electron transfer process. Based on these observations, a possible mechanism for ORR over the surface of Mn-N-C modified electrode is proposed.
-
-
-
[1]
[1] XIONG W, DU F, LIU Y, PEREZ A, Jr SUPP M, RAMAKRISHNAN T S, DAI L, JIANG L. 3-D carbon nanotube structures used as high performance catalyst for oxygen reduction reaction[J]. J Am Chem Soc, 2010, 132(45): 15839-15841.
-
[2]
[2] LIU G, LI X, GANESAN P, POPOV B N. Development of non-precious metal oxygen-reduction catalysts for PEM fuel cells based on N-doped ordered porous carbon[J]. Appl Catal B: Environ, 2009, 93(1/2): 156-165.
-
[3]
[3] 郑龙珍, 陶堃, 熊乐艳, 叶丹, 韩奎, 纪忆. 碱性介质中Fe/N/C 催化剂的氧气还原反应催化性能研究[J]. 化学学报, 2012, 70(22): 2342-2346. (ZHENG Long-zhen, TAO Kun, XIONG Le-yan, YE Dan, HAN Kui, JI Yi. Electrocatalytic activity of Fe/N/C catalyst for the oxygen reduction reaction in alkaline electrolyte[J]. Acta Chim Sin, 2012, 70(22): 2342-2346.)
-
[4]
[4] SHENG Z, SHAO L, CHEN J, BAO W , WANG F, XIA X. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis[J]. ACS Nano, 2011, 5(6): 4350-4358.
-
[5]
[5] LEFVRE M, PROIETTI E, JAOUEN F, DODELET J. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells[J]. Science, 2009, 324: 71-74.
-
[6]
[6] TONG J, LI Z, XIA C. Highly efficient catalysts of chitosan-Schiff base Co(II) and Pd(II) complexes for aerobic oxidation of cyclohexane in the absence of reductants and solvents[J]. J Mol Catal A, 2005, 231(1/2): 197-203.
-
[7]
[7] QIAO J, RUI L, LIU J, MA J. Novel system of electro-catalysts for oxygen reduction based on organic metal complexes in acidic media for PEMFCs[J]. ECST, 2010, 33(1): 595-601.
-
[8]
[8] ZHANG R, MA J, WANG W, WANG B, LI R. Zeolite-encapsulated M(Co, Fe, Mn)(SALEN) complexes modified glassy carbon electrodes and their application in oxygen reduction[J]. J Electroanal Chem, 2010, 643(1/2): 31-38.
-
[9]
[9] ZHANG H, LIANG C, TIAN Z, WANG G , CAI W. Single phase Mn3O4 nanoparticles obtained by pulsed laser ablation in liquid and their application in rapid removal of trace pentachlorophenol[J]. J Phys Chem C, 2010, 114(29): 12524-12528.
-
[10]
[10] 苏鹏, 郭慧林, 彭三, 宁生科. 氮掺杂石墨烯的制备及其超级电容性能[J].物理化学学报, 2012, 28(11): 2745-2753. (SU Peng, GUO Hui-lin, PENG San, NING Sheng-ke. Preparation of nitrogen-doped graphene and its supercapacitive properties[J]. Acta Phys-Chim Sin, 2012, 28(11): 2745-2753.)
-
[11]
[11] GAC W. The influence of silver on the structural, redox and catalytic properties of the cryptomelane-type manganese oxides in the low-temperature CO oxidation reaction[J]. Appl Catal B: Environ, 2007, 75(1/2): 107-117.
-
[12]
[12] WANG C, YIN L, XIANG D, QI Y. Uniform carbon layer coated Mn3O4 nanorod anodes with improved reversible capacity and cyclic stability for lithium ion batteries[J]. ACS Appl Mater Interfaces, 2012, 4(3): 1636-1643.
-
[13]
[13] LI Z P, LIU Z X, ZHU K N, LI Z, LIU B H. Synergy among transition element, nitrogen, and carbon for oxygen reduction reaction in alkaline medium[J]. J Power Sources, 2012, 219(1): 163-171.
-
[14]
[14] FENG W, LI H Y, CHENG X, JAO T C,WENG F B, SU A, CHIANG Y C. A comparative study of pyrolyzed and doped cobalt-polypyrrole eletrocatalysts for oxygen reduction reaction[J]. Appl Surf Sci, 2012, 258(8): 4048-4053.
-
[15]
[15] ZHANG H J, YUAN X X, SUN L L. Pyrolyzed CoN4-chelate as an electrocatalyst for oxygen reduction reaction in acid media[J]. Int J Hydrogen Energy, 2010, 35(7): 2900-2903.
-
[16]
[16] ZHANG G Q, YANG F L. Electrocatalytic reduction of dioxygen at glassy carbon electrodes modified with polypyrrole/anthraquinonedisulphonate composite film in various pH solutions[J]. Electrochim Acta, 2007, 52(24): 6595-6603.
-
[17]
[17] KUMAR S A, CHEN S M. Electrocatalytic reduction of oxygen and hydrogen peroxide at poly(p-aminobenzene sulfonic acid)-modified glassy carbon electrodes[J]. J Mol Catal A, 2007, 278(1/2): 244-250.
-
[18]
[18] VELZQUEZ-PALENZUELA A, ZHANG L, WANG L, CABOT P L, BRILLAS E, TSAYA K, ZHANG J. Fe-Nx/C electrocatalysts synthesized by pyrolysis of Fe(II)-2,3,5,6-tetra(2-pyridyl)pyrazine complex for PEM fuel cell oxygen reduction reaction[J]. Electrochim Acta, 2011, 56(13): 4744-4752.
-
[19]
[19] JI Y, LI Z, WANG S, XU G, YU X. Thermal treatment of Co (II) tetracarboxyphenyl porphyrin supported on carbon as an electrocatalyst for oxygen reduction[J]. Int J Hydrogen Energy, 2010, 35(15): 8117-8121.
-
[20]
[20] WIGGINS-CAMACHO J D, STEVENSON. K J. Mechanistic discussion of the oxygen reduction reaction at nitrogen-doped carbon nanotubes[J]. J Phys Chem C, 2011, 115(40): 20002-20010.
-
[21]
[21] NALLATHAMBI V, LEE J W, KUMARAGURU S P, WU G, POPOV B N. Development of high performance carbon composite catalyst for oxygen reduction reaction in PEM proton exchange membrane fuel cells[J]. J Power Sources, 2008, 183(1): 34-42.
-
[22]
[22] MALDONADO S, STEVENSON K J. Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes[J]. J Phys Chem B, 2005, 109(10): 4707-4716.
-
[23]
[23] GONG K, DU F, XIA Z, DURSTOCK M, DAI L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009, 323(5915): 760-764.
-
[24]
[24] JASINSKY R. A new fuel cell cathode catalyst[J]. Nature, 1964, 201(21): 1212-1213.
-
[1]
-
-
-
[1]
Xichen YAO , Shuxian WANG , Yun WANG , Cheng WANG , Chuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384
-
[2]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[3]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012
-
[4]
Lu Zhuoran , Li Shengkai , Lu Yuxuan , Wang Shuangyin , Zou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003
-
[5]
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
-
[6]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[7]
Xiting Zhou , Zhipeng Han , Xinlei Zhang , Shixuan Zhu , Cheng Che , Liang Xu , Zhenyu Sun , Leiduan Hao , Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070
-
[8]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[9]
Dong-Bing Cheng , Junxin Duan , Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053
-
[10]
Tao Wang , Qin Dong , Cunpu Li , Zidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061
-
[11]
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
-
[12]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[13]
Jianchun Wang , Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082
-
[14]
Xueting Cao , Shuangshuang Cha , Ming Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041
-
[15]
Xinyi Zhang , Kai Ren , Yanning Liu , Zhenyi Gu , Zhixiong Huang , Shuohang Zheng , Xiaotong Wang , Jinzhi Guo , Igor V. Zatovsky , Junming Cao , Xinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057
-
[16]
Ye Wang , Ruixiang Ge , Xiang Liu , Jing Li , Haohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019
-
[17]
Xinlong XU , Chunxue JING , Yuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046
-
[18]
Wentao Xu , Xuyan Mo , Yang Zhou , Zuxian Weng , Kunling Mo , Yanhua Wu , Xinlin Jiang , Dan Li , Tangqi Lan , Huan Wen , Fuqin Zheng , Youjun Fan , Wei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003
-
[19]
Qing Li , Guangxun Zhang , Yuxia Xu , Yangyang Sun , Huan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045
-
[20]
Ruizhi Duan , Xiaomei Wang , Panwang Zhou , Yang Liu , Can Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(455)
- HTML views(30)