Citation: ZENG Shang-hong, SU Hai-quan, DING Ning, YU Shi-yong, LIU Ke-wei. Co/SBA-16:Highly selective Fischer-Tropsch synthesis catalyst towards diesel fraction[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(4): 449-454. shu

Co/SBA-16:Highly selective Fischer-Tropsch synthesis catalyst towards diesel fraction

  • Corresponding author: SU Hai-quan, 
  • Received Date: 17 December 2013
    Available Online: 17 February 2014

  • A series of Co/SBA-16 catalysts were prepared by the incipient wetness impregnation method and characterized with N2 physisorption,X-ray diffraction,H2-temperature programmed reduction,hydrogen chemisorption and transmission electron microscopy techniques. It was found that the Co0 dispersion decreased with increasing cobalt loading,being consistent with the increase of Co3O4 crystallite sizes and the decrease of BET surface area. The Co/SBA-16 catalysts show high CO conversion,low C1 selectivity,high C5+ hydrocarbon selectivity,and especially high selectivity towards diesel fraction.
  • 加载中
    1. [1]

      [1] JALAMA K, KABUBA J, XIONG H, JEWELL L L. Co/TiO2 Fischer-Tropsch catalyst activation by synthesis gas[J]. Catal Commun, 2012, 17(1): 154-159.

    2. [2]

      [2] LIRA E, LOPEZ CM, OROPEZA F, BARTOLINI M, ALVAREZ J, GOLDWASSER M, LINARES FL, LAMONIER J F, ZURITA M J P. HMS mesoporous silica as cobalt support for the Fischer-Tropsch synthesis: Pretreatment, cobalt loading and particle size effects[J]. J Mol Catal A: Chem, 2008, 281(1/2): 146-153.

    3. [3]

      [3] JANBROERS S, CROZIER P A, ZANDBERGEN H W, KOOYMAN P J. A model study on the carburization process of iron-based Fischer-Tropsch catalysts using in situ TEM-EELS[J]. Appl Catal B: Environ, 2011, 102(3/4): 521-527.

    4. [4]

      [4] SUZUKI Y, KUCHIDA M, SAKAMA Y, SAIKI H, KARUBE I, TSUBAKI N. Promotion effect of the addition of Eu to Co/silica catalyst for Fischer-Tropsch synthesis[J]. Catal Commun, 2013, 36(1): 75-78.

    5. [5]

      [5] KRESGE C T, LEONOWICZ M E, ROTH W J, VARTULI J C, BECK J S. Ordered mesoporous molecular sieves synthesized by a liquidcrystal template mechanism[J]. Nature, 1992, 359(22): 710-712.

    6. [6]

      [6] PANPRANOT J, Jr GOODWIN JG, SAYARI A. CO hydrogenation on Ru-promoted Co/MCM-41 catalysts[J]. J Catal, 2002, 211(2): 530-539.

    7. [7]

      [7] WANG Y, NOGUCHI M, TAKAHASHI Y, OHTSUKA Y. Synthesis of SBA-15 with different pore sizes and the utilization as supports of high loading of cobalt catalysts[J]. Catal Today, 2001, 68(1/3): 3-9.

    8. [8]

      [8] LI H L, WANG S G, LING F X, LI J L. Studies on MCM-48 supported cobalt catalyst for Fischer-Tropsch synthesis[J]. J Mol Catal A: Chem, 2006, 244(1/2): 33-40.

    9. [9]

      [9] GRIBOVAL-CONSTANT A, KHODAKOV A Y, BECHARA R, ZHOLOBENKO V L. Support mesoporosity: A tool for better control of catalytic behavior of cobalt supported Fischer Tropsch catalysts[J]. Stud Surf Sci Catal, 2002, 144(1): 609-616.

    10. [10]

      [10] KHODAKOV A Y, GRIBOVAL-CONSTANT A, BECHARA R, VILLAIN F. Pore-size control of cobalt dispersion and reducibility in mesoporous silicas[J]. J Phys Chem B, 2001, 105(40): 9805-9811.

    11. [11]

      [11] XIONG H F, ZHANG Y H, LIEW K Y, LI J L. Ruthenium promotion of Co/SBA-15 catalysts with high cobalt loading for Fischer-Tropsch synthesis[J]. Fuel Process Technol, 2009, 90(2): 237-246.

    12. [12]

      [12] KIM T W, RYOO R, KRUK M, GIERSZAL K P, JARONIEC M, KAMIYA S, TERASAKI O. Tailoring the pore structure of SBA-16 silica molecular sieve through the use of copolymer blends and control of synthesis temperature and time[J]. J Phys Chem B, 2004, 108(31): 11480-11489.

    13. [13]

      [13] ZHAO Y X, ZHANG Y H, CHEN J, LI J L, LIEW K Y, NORDIN M R B. SBA-16 supported cobalt catalyst with high activity and stability for the Fischer-Tropsch synthesis[J]. ChemCatChem, 2012, 4(2): 265-272.

    14. [14]

      [14] KLIMOVA T, LIZAMA L, AMEZCUA J C, ROQUERO P, TERRES E, NAVARRETE J, DOMINGUEZ J M. New NiMo catalysts supported on Al-containing SBA-16 for 4, 6-DMDBT hydrodesulfurization effect of the alumination method[J]. Catal Today, 2004, 98(1/2): 141-150.

    15. [15]

      [15] LAPIDUS A, KRYLOVA A, KAZANSKII V, BOROVKOV V, ZAITSEV A, RATOUSKY J, ZULAL A, JANCALKOVA M. Hydrocarbon synthesis from carbon monoxide and hydrogen on impregnated cobalt catalysts Part I. Physico-chemical properties of 10% cobalt/alumina and 10% cobalt/silica[J]. Appl Catal, 1991, 73(1): 65-82.

    16. [16]

      [16] JACOBS G, DAS T K, ZHANG Y, LI J, RACOILLET G, DAVIS B H. Fischer-Tropsch synthesis: Support, loading, and promoter effects on the reducibility of cobalt catalysts[J]. Appl Catal A: Gen, 2002, 233(1/2): 263-281.

    17. [17]

      [17] PARK S J, BAE J W, OH J H, CHARY K V R, SAI PRASAD P S, JUN K W, RHEE Y W. Influence of bimodal pore size distribution of Ru/Co/ZrO2-Al2O3 during Fischer-Tropsch synthesis in fixed-bed and slurry reactor[J]. J Mol Catal A: Chem, 2009, 298(1/2): 81-87.

    18. [18]

      [18] JIA L H, JIA L T, LI D B, HOU B, WANG J G, SUN Y H. Silylated Co/SBA-15 catalysts for Fischer-Tropsch synthesis[J]. J Solid State Chem, 2011, 184(3): 488-493.

  • 加载中
    1. [1]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    2. [2]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    3. [3]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    4. [4]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    5. [5]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    6. [6]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    7. [7]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    8. [8]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    9. [9]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    10. [10]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    11. [11]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    12. [12]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    13. [13]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    14. [14]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    15. [15]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    16. [16]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    17. [17]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    18. [18]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

Metrics
  • PDF Downloads(0)
  • Abstract views(405)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return