Citation: ZHANG Jie, LI Xiao-long, CHEN Gang, SU Hui-jun, ZHAO Wei. Study on aquathermolysis of heavy oil at relatively low temperature catalyzed by water-soluble complexes[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(4): 443-448. shu

Study on aquathermolysis of heavy oil at relatively low temperature catalyzed by water-soluble complexes

  • Corresponding author: CHEN Gang, 
  • Received Date: 18 November 2013
    Available Online: 10 January 2014

    Fund Project: 陕西省科技计划项目(2012KJXX-40) (2012KJXX-40)陕西省教育厅科研计划项目(2013JK0647)。 (2013JK0647)

  • Two series of ten transition metal complexes were prepared as the catalysts for the catalytic aquathermolysis of heavy oil at relatively low temperature. In this reaction system, the dosage of water can affect the aquathermolysis efficiency, and the proper mass fraction of water/oil is 0.3. Some complexes can catalyze the aquathermolysis effectively at 180 ℃, in which N5 catalyst is the most effective one to drop the pour point with 11.4 ℃, while N2 and N5 catalysts are the most effective ones to reduce the viscosity by more than 70%. The proper dosage of N5 catalyst in this reaction system is 0.5%. TG and GC analysis show that the light components increase remarkably after the aquathermolysis.
  • 加载中
    1. [1]

      [1] 何贤杰, 刘增洁, 吴初国, 盛昌明. 我国石油安全评价及建议[J]. 国土资源情报, 2012, (10): 1-7. (HE Xian-jie, LIU Zeng-jie, WU Chu-guo, SHENG Chang-ming. The security evaluation and recommendation of China's oil[J]. Land Resource Information, 2012, (10): 1-7.)

    2. [2]

      [2] 杨凯, 唐晓东, 刘付臣. 稠油井下改质降粘技术的研究进展[J]. 石油与天然气化工, 2011, 40(5): 499-502. (YANG Kai, TANG Xiao-dong, LIU Fu-chen. Techniques study progress of heavy oil downhole upgrading and viscosity reduction[J]. Chemical Engineering of Oil & Gas, 2011, 40(5): 499-502.)

    3. [3]

      [3] KATARITZKY A R, SISKIN M. Aquathermolysis: Reactions of organic compounds with superheated water[J]. Acc Chem Res, 1996, 29(8): 399-406.

    4. [4]

      [4] 吴川. 双亲型稠油水热裂解降粘催化剂的合成及反应机理研究. 北京: 中国石油大学, 2011. (WU Chuan. Synthesis of amphiphilic catalyst and study its mechanism for heavy oil by aquathermolysis reaction. Beijing: China University of Petroleum, 2011.)

    5. [5]

      [5] 程红晓, 赵长喜, 王晓东, 郑会, 徐立, 陈军.催化降粘剂作用下河南稠油族组成变化研究[J].石油化工应用, 2011, 30(12): 70-72. (CHENG Hong-xiao, ZHAO Chang-xi, WANG Xiao-dong, ZHENG Hui, XU Li, CHEN Jun. Study on constituents changes of heavy oils under treatment of catalytic viscosity-reducing agent[J]. Petrochemical Industry Application, 2011, 30(12): 70-72.)

    6. [6]

      [6] CLARK P D, HYNE J B, TYRER J D. Chemistry of organosulfur compound type occurring in heavy oil sands: 3. Reaction of thiophene and tetrahydro-thiophene with vanadyl and nickel salts[J]. Fuel, 1984, 63(6): 1649-1645.

    7. [7]

      [7] 刘永建, 陈尔跃, 闻守斌, 刘春天. 用油酸钼和石油磺酸盐强化辽河油田稠油降粘的研究[J]. 石油与天然气化工, 2005, 34(6): 511-512. (LIU Yong-jian, CHEN Er-yue, WEN Shou-bin, LIU Chun-tian. The preparation and evaluation of oil-soluble catalyst for aquathermolysis of heavy oil[J]. Chemical Engineering of Oil & Gas, 2005, 34(6): 511-512.)

    8. [8]

      [8] 赵长喜, 郑延成, 陈奇, 石步乾, 程红晓. 有机钼氧化体系对南阳稠油粘度的影响[J]. 石油天然气学报(江汉石油学院学报), 2007, 29(3): 464-467. (ZHAO Chang-xi, ZHENG Yan-cheng, CHEN Qi, SHI Bu-qian, CHENG Hong-xiao. Effect of oxidating system containing organic Mo on heavy oil viscosity of Nanyang oilfield[J]. Journal of Oil and Gas Technology (J1 JPI), 2007, 29(3): 464-467.)

    9. [9]

      [9] 范洪福. 辽河稠油水热裂解反应研究与应用[D]. 黑龙江: 大庆石油学院, 2002. (FAN Hong-fu. Study and application of aquathermolysis for Liaohe heavy oils[D]. Heilongjiang: Northeast Petroleum University, 2002.)

    10. [10]

      [10] NISHIDA Y, YAMADA K. Lipoxygenase-like function of some binuclear iron(Ⅱ) complexes[J]. J Chem Soc Dalton Trans, 1990: 3639-3641.

    11. [11]

      [11] ARNOLD M, BROWN D A, DEEG O, ERRINGTON W, HAASE W, HERLIHY K, KEMP T J, NIMIR H, WERNER R. Hydroxamate-bridged dinuclear nickel complexes as models for urease inhibition[J]. Inorg Chem, 1998, 37(12): 2920-2925.

    12. [12]

      [12] 韩晓强, 李爱军, 刘琼. 稠油含水对粘度影响探讨[J]. 新疆石油科技, 2010, 20(4): 48-50. (HAN Xiao-qiang, LI Ai-jun, LIU Qiong. Study of the effect of the water in heavy oil on viscosity[J]. Xijiang Petroleum Science & Technology, 2010, 20(4): 48-50.)

    13. [13]

      [13] 李恩田, 王树立, 赵会军, 申龙涉, 王为民. 含水超稠油表观粘度的试验与研究[J]. 油气储运, 2007, 26(11): 52-55. (LI En-tian, WANG Shu-li, ZHAO Hui-jun, SHEN Long-she, WANG Wei-min. Experimental study on apparent viscosity of water cut super-heavy oils[J]. Oil and Gas Storage and Transportation, 2007, 26(11): 52-55.)

    14. [14]

      [14] CLARK P D, HYNE J B, TYRER J D. Chemistry of organ sulfur compound type occurring in heavy oil sands: 4. The high temperature reaction of hiophene and tetrahydro-thiophene with aqueous solution of aluminium and first row transition-metal cations[J]. Fuels, 1987, 66(5): 1353-1357.

    15. [15]

      [15] CLARK P D, HYNE J B, TYRER J D. Chemistry of organosulfur compound type occurring in heavy oil sands: 5. Reaction of thiophene and tetrahydro-thiophene with aqueous group ⅧB metal species at high temperature[J]. Fuels, 1987, 66(5): 1699-1702.

  • 加载中
    1. [1]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    2. [2]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    3. [3]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    6. [6]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    7. [7]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    8. [8]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    9. [9]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    10. [10]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    11. [11]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    15. [15]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    16. [16]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    17. [17]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    18. [18]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    19. [19]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    20. [20]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

Metrics
  • PDF Downloads(0)
  • Abstract views(795)
  • HTML views(88)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return