Citation: ZHAO Ying-jie, CHEN Xue-li, CHEN Han-ding, LIU Hai-feng. Transfer of potassium in different forms during pyrolysis of rice straw in a fixed bed reactor[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(4): 427-433. shu

Transfer of potassium in different forms during pyrolysis of rice straw in a fixed bed reactor

  • Corresponding author: CHEN Xue-li, 
  • Received Date: 9 October 2013
    Available Online: 29 December 2013

    Fund Project: 国家自然科学基金(21306050) (21306050)国家科技支撑计划(2012BAA09B02) (2012BAA09B02)新世纪优秀人才支持计划(NCET-12-0854)。 (NCET-12-0854)

  • Three materials including raw and water-washed ice straw, and microcrystalline cellulose with 5%KCl loaded were pyrolysed in the fixed bed reactor to investigate the transfer of potassium in four forms. The results indicate that the release of potassium changes little with pyrolysis temperature below 700 ℃, and the release of potassium dramatically increases with pyrolysis temperature above 700 ℃. During the rice straw pyrolysis, the transfer of four forms of potassium takes place, in which the water soluble and the potassium in residue decrease. It is confirmed that the potassium combined with carbon can be partly changed to water soluble, and the water soluble and organically bound potassium can exchange each other during pyrolysis.
  • 加载中
    1. [1]

      [1] ZENG X, MA Y, MA L. Utilization of straw in biomass energy in China[J]. Renew Sus Energy Rev, 2007, 11(5): 976-987.

    2. [2]

      [2] ZHANG Z, CHEN B, CHEN A, ZHAO W. Barriers to commercialization development of crop straw gasification technology in China and promoting policy design[J]. Part B: Econom, Plan, Pol, 2013, 8(3): 279-289.

    3. [3]

      [3] LIU H P, FENG Y J, WU S H, LIU D Y. The role of ash particles in the bed agglomeration during the fluidized bed combustion of rice straw[J]. Bioresour Technol, 2009, 100(24): 6505-6513.

    4. [4]

      [4] TORTOSA MASIA A A, BUHRE B J P, GUPTA R P, WALL T F. Characterising ash of biomass and waste[J]. Fuel Process Technol, 2007, 88(11/12): 1071-1081.

    5. [5]

      [5] EOM I Y, KIM J Y, KIM T S, LEE S M, CHOI D, CHOI I G, CHOI J W. Effect of essential inorganic metals on primary thermal degradation of lignocellulosic biomass[J]. Bioresour Technol, 2012, 104: 687-694.

    6. [6]

      [6] HU J L, HE X W, WANG C R, LI J W, ZHANG C H. Cadmium adsorption characteristic of alkali modified sewage sludge[J]. Bioresour Technol, 2012, 121: 25-30.

    7. [7]

      [7] 杨涛. 生物质快速热解气化过程中碱/碱土金属析出规律的试验研究[D]. 武汉: 华中科技大学, 2009.(YANG Tao. Study on the release of AAEMs during biomass rapid pyrolysis and gasification[D]. Wuhan: Huazhong University of Science and Technology, 2009.)

    8. [8]

      [8] KEOWN D M, FAVAS G, HAYSHIS J I, LI C Z. Volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass: Differences between sugar cane bagasse and cane trash[J]. Bioresour Technol, 2005, 96(14): 1570-1577.

    9. [9]

      [9] JENSEN P A, FRANDEN F J, DAM-JOHANSEN K, SANDER, B. Experimental investigation of the transformation and release to gas phase of potassium and chlorine during straw pyrolysis[J]. Energy Fuels, 2000, 14(6): 1280-1285.

    10. [10]

      [10] KNUDSEN J N, JENSEN P A, DAM-JOHANSEN K. Transformation and release to the gas phase of Cl, K, and S during combustion of annual biomass[J]. Energy Fuels, 2004, 18(5): 1385-1399.

    11. [11]

      [11] LINDBERG D, BACKMAN R, CHARTRAND P, HUPA M. Towards a comprehensive thermodynamic database for ash-forming elements in biomass and waste combustion-current situation and future developments[J]. Fuel Process Technol, 2013, 105: 129-141.

    12. [12]

      [12] 陈安合, 杨学民, 林伟刚. 生物质热解和气化过程Cl及碱金属逸出行为的化学热力学平衡分析[J]. 燃料化学学报, 2007, 35(5): 539-547.(CHEN An-he, YANG Xue-min, LIN Wei-gang. Release characteristics of chlorine and alkali metals during pyrolysis and gasification of biomass[J]. Journal of Fuel Chemistry and Technology, 2007, 35(5): 539-547.)

    13. [13]

      [13] BOSTROM D, SKOGLUND N, GRIMM A. Ash transformation chemistry during combustion of biomass[J]. Energy Fuels, 2011, 26(1): 85-93.

    14. [14]

      [14] PETTERSSON A, ÅMAND L E, STEENARI B M. Chemical fractionation for the characterisation of fly ashes from co-combustion of biofuels using different methods for alkali reduction[J]. Fuel, 2009, 88(9): 1758-1772.

    15. [15]

      [15] 吴晓红. 无机盐在秸秆中的分布及酶解纤维素机理研究[D]. 合肥: 中国科学技术大学, 2009.(WU Xiao-hong. Study on distribution and composition of inorganic salts in straw and mechanism of cellulase[D]. Hefei: University of Science and Technology of China, 2009.)

    16. [16]

      [16] ANDREA J C, AKAY G. Speciation and distribution of alkali, alkali earth metals and major ash forming elements during gasification of fuel cane bagasse[J]. Fuel, 2012, 91(1): 253-263.

    17. [17]

      [17] CEN/TS 15290: 2006. Solid biofuels-determination of major elements[S].

    18. [18]

      [18] BENSON S A, HOLM P L. Comparison of inorganic constituents in three low-rank coals[J]. Ind Eng Chem Prod Res Dev, 1985, 24: 145-149.

    19. [19]

      [19] ZEVENHOVEN-ONDERWATER M, BACKMAN R, SKRIFAVARS B, HUPA M. The ash chemistry in fluidised bed gasification of biomass fuels. Part 1: Predicting the chemistry of melting ashes and ash-bed material interaction[J]. Fuel, 2001, 80(10): 1489-1502.

    20. [20]

      [20] LIAW S B, WU H W. Leaching characteristics of organic and inorganic matter from biomass by water: Differences between batch and semi-continuous operations[J]. Ind Eng Chem Res, 2013, 52(11): 4280-4289.

    21. [21]

      [21] 余春江, 骆仲泱, 张文楠, 方梦祥, 周劲松, 岑可法. 碱金属及相关无机元素在生物质热解中的转化析出[J]. 燃料化学学报, 2000, 28(5): 420-425.(YU Chun-jiang, LUO Zhong-yang, ZHANG Wen-nan, FANG Meng-xiang, ZHOU Jing-song, CENG Ke-fa. Inorganic material emission during biomass pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2000, 28(5): 420-425.)

    22. [22]

      [22] KAPTEIJN F, JURIAANS J, MOULIJN J A. Formation of intercalate-like structures by heat treatment of K2CO3-carbon in an inert atmosphere[J]. Fuel, 1983, 62(2): 249-251.

    23. [23]

      [23] WU Y Q, WU S Y, LI Y, GAO J S. Physico-chemical characteristics and mineral transformation behavior of ashes from crop straw[J]. Energy Fuels, 2009, 23(10): 5144-5150.

  • 加载中
    1. [1]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    2. [2]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    5. [5]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    6. [6]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    9. [9]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    10. [10]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    11. [11]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    12. [12]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    13. [13]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    14. [14]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    15. [15]

      Hongpeng HeMengmeng ZhangMengjiao HaoWei DuHaibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043

    16. [16]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    17. [17]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    18. [18]

      Rui LiHuan LiuYinan JiaoShengjian QinJie MengJiayu SongRongrong YanHang SuHengbin ChenZixuan ShangJinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011

    19. [19]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    20. [20]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

Metrics
  • PDF Downloads(0)
  • Abstract views(829)
  • HTML views(112)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return