Citation: WU Hong-xiang, LIU An-qi, LI Lan-lan, WANG Xiao-bo, ZHAO Zeng-li, LI Hai-bin, HE Fang. Effects of potassium on pyrolysis characteristics of pine[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(4): 420-426. shu

Effects of potassium on pyrolysis characteristics of pine

  • Corresponding author: ZHAO Zeng-li, 
  • Received Date: 4 November 2013
    Available Online: 20 December 2013

    Fund Project: 国家重点基础研究发展规划(973计划,2011CB201500) (973计划,2011CB201500)广东省科技计划(2012B050500007)。 (2012B050500007)

  • Pine loaded K2CO3 were pyrolysed by tubular furnace. The experiment of pyrolysis vapor of pine passed through sand mixed with K2CO3 or char added K2CO3 were also performed to simulated the effects of potassium on vapor. The results indicated that K could catalyze pyrolysis process, increase the char yields and decrease CO yields markedly. K could increase the gas yield in low temperature while decrease it in higher temperature. The pyrolysis vapor could decompose when pass through K, which lead to lower liquid yield and higher CO, CO2, H2 yield. Char of pine also could catalyze tar cracking, increase H2, CO2 and decrease CO, CH4, C2 yields in gas. Char added K was favor to the cracking of tar and the reaction between gas and char. Effects of potassium on biomass pyrolysis characteristics was achieved by catalyzing the primary pyrolysis and the reaction of the pyrolysis vapor.
  • 加载中
    1. [1]

      [1] FAHMI R, BRIDGWATER A V, DARVELL L I, JONES J M, YATES N, THAIN S, DONNISON I S. The effect of alkali metals on combustion and pyrolysis of Lolium and Festuca grasses, switchgrass and willow[J]. Fuel, 2007, 86(10/11): 1560-1569.

    2. [2]

      [2] SHIMADA N, KAWAMOTO H, SAKA S. Different action of alkali/alkaline earth metal chlorides on cellulose pyrolysis[J]. J Anal Appl Pyrolysis, 2008, 81(1): 80-87.

    3. [3]

      [3] PATWARDHAN P R, SATRIO J A, BROWN R C, SHANKS B H. Influence of inorganic salts on the primary pyrolysis products of cellulose[J]. Bioresour Technol, 2010, 101(12): 4646-4655.

    4. [4]

      [4] NOWAKOWSKI D J, JONES J M. Uncatalysed and potassium-catalysed pyrolysis of the cell-wall constituents of biomass and their model compounds[J]. J Anal Appl Pyrolysis, 2008, 83(1): 12-25.

    5. [5]

      [5] KOWALSKI T, LUDWIG C, WOKAUN A. Qualitative evaluation of alkali release during the pyrolysis of biomass[J]. Energy Fuels, 2007, 21(5): 3017-3022.

    6. [6]

      [6] OLSSON J G, JALID U, PETTERSSON B C. Alkali metal emission during pyrolysis of biomass[J]. Energy Fuels, 1997, 11(4): 779-784.

    7. [7]

      [7] 廖艳芬, 王树荣, 骆仲泱, 岑可法. 金属离子催化生物质热裂解规律及其对产物的影响[J]. 林产化学与工业, 2005, 25(6): 25-30. (LIAO Yan-fen, WANG Shu-rong, LUO Zhong-yang, CEN Ke-fa. The behavior of biomass pyrolysis catalyzed by metallic ions and their effects on the products[J]. Chemistry and Industry of Forest Products, 2005, 25(6): 25-30. )

    8. [8]

      [8] KEOWN D M, HAYASHI J I, LI C Z. Effects of volatile-char interactions on the volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass[J]. Fuel, 2008, 87(7): 1187-1194.

    9. [9]

      [9] HOSOKAI S, HAYASHI J I, SHIMADA T, KOBAYASHI Y, KURAMOTO K, LI C Z, CHIBA T. Spontaneous generation of tar decomposition promoter in a biomass steam reformer[J]. Chem Eng Res Design, 2005, 83(9): 1093-1102.

    10. [10]

      [10] YANG H P, YAN R, CHEN H P, LEE D H, LIANG D T, ZHENG C G. Pyrolysis of palm oil wastes for enhanced production of hydrogen rich gases[J]. Fuel Process Technol, 2006, 87(10): 935-942.

    11. [11]

      [11] FU P, HU S, SUN L S, XIANG J, YANG T, ZHANG A C, ZHANG J Y. Structural evolution of maize stalk/char particles during pyrolysis[J]. Bioresour Technol, 2009, 100(20): 4877-4883.

    12. [12]

      [12] ZHANG S P, YAN Y J, LI T C, REN Z W. Upgrading of liquid fuel from the pyrolysis of biomass[J]. Bioresour Technol, 2005, 96(5): 545-550.

    13. [13]

      [13] AKHTAR J, AMIN N S. A review on operating parameters for optimum liquid oil yield in biomass pyrolysis[J]. Renew Sust Energy Rev, 2012, 16(7): 5101-5109.

    14. [14]

      [14] 武宏香, 赵增立, 张伟, 李海滨, 何方. 碱/碱土金属对纤维素热解特性的影响[J]. 农业工程学报, 2012, 28(4): 215-220. (WU Hong-xiang, ZHAO Zeng-li, ZHANG Wei, LI Hai-bin, HE Fang. Effects of alkali/alkaline earth metals on pyrolysis characteristics of cellulose[J]. Transactions of the CSAE, 2012, 28(4): 215-220.)

    15. [15]

      [15] SUN Q S, YU S, WANG F C, WANG J. Decomposition and gasification of pyrolysis volatiles from pine wood through a bed of hot char[J]. Fuel, 2011, 90(3): 1041-1048.

    16. [16]

      [16] 谭洪, 王树荣, 骆仲泱, 余春江,岑可法. 金属盐对生物质热解特性影响试验研究[J]. 工程热物理学报, 2005, 26(5): 742-744. (TAN Hong, WANG Shu-Rong, LUO Zhong-Yang, YU Chun-Jiang, CEN Ke-Fa. Influence of metallic salt on biomass flash pyrolysis cgaracteristics. Journal of Engineering Thermophysics, 2005, 26(5): 742-744.)

    17. [17]

      [17] De LASA H, SALAICES E, MAZUMDER J, LUCKY R. Catalytic steam gasification of biomass: Catalysts, thermodynamics and kinetics[J]. Chem Rev, 2011, 111(9): 5404-5433.

    18. [18]

      [18] BOEHM H P. Some aspects of the surface chemistry of carbon blacks and other carbons[J]. Carbon, 1994, 32(5):759-769.

  • 加载中
    1. [1]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    2. [2]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    3. [3]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    6. [6]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    7. [7]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    10. [10]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    11. [11]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    12. [12]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    13. [13]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    14. [14]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    15. [15]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    16. [16]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    20. [20]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

Metrics
  • PDF Downloads(0)
  • Abstract views(429)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return