Citation: ZHENG Min, SHEN Lai-hong, FENG Xiao-qiong. Study on chemical-looping combustion of coal with CaSO4 oxygen carrier assisted by CaO addition[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(4): 399-407. shu

Study on chemical-looping combustion of coal with CaSO4 oxygen carrier assisted by CaO addition

  • Corresponding author: ZHENG Min, 
  • Received Date: 29 October 2013
    Available Online: 23 December 2013

    Fund Project: 国家自然科学基金(51306084,51276037,51174105)。 (51306084,51276037,51174105)

  • The reactivity between the CaSO4 oxygen carrier with CaO additive and coal under steam atmosphere was studied in a fluidized bed reactor. The experimental results show that the addition of CaO can improve the performance of both coal gasification and CaSO4 reduction, and increase the reaction rate of coal gasification and CaSO4 reduction and the CO2 generating rate. However, the catalysis of CaO drops as the reaction temperature rises. And the optimum reaction temperature is 900 ℃, at which the releases of gaseous sulfides are remarkably decreased by 63.19% and 27.37% for SO2 and H2S, respectively, as the molar ratio of CaO to CaSO4 is 1.18. Meanwhile, the amount of CO2 absorbed by CaO can be controlled to less than 2%.
  • 加载中
    1. [1]

      [1] RICHTER H J, KNOCHE K F. Reversibility of combustion processes, efficiency and costing[C]//ACS Symposium Series. Washington, DC: American Chemical Society, 1983, 235: 71-85.

    2. [2]

      [2] SCOTT S A, DENNIS J S, HAYHURST A N, BROWN T. In situ gasification of a solid fuel and CO2 separation using chemical looping[J]. AIChE J, 2006, 52(9): 3325-3328.

    3. [3]

      [3] SHEN L, ZHENG M, XIAO J, ZHANG H, XIAO R. Chemical looping combustion of coal in interconnected fluidized beds[J]. Sci China Ser E, 2007, 50(2): 230-240.

    4. [4]

      [4] XIANG W, CHENG Y. Carbon-free Co-production of hydrogen and electricity from coal using chemical looping reactors[J]. Proceedings of the CSEE, 2007, 27: 45-49.

    5. [5]

      [5] JUKKOLA G, LILJEDAHL G, NSAKALA N Y, MORIN J X, ANDRUS H. An Alstom vision of future CFB technology based power plant concepts[C]//18th International Conference on Fluidized Bed Combustion. Toronto: ASMEPress, 2005: 109-120.

    6. [6]

      [6] WANG J, ANTHONY E J. Clean combustion of solid fuels[J]. Appl Energy, 2008, 85(2/3): 73-79.

    7. [7]

      [7] 郑瑛, 王保文, 宋侃, 郑楚光. 化学链燃烧技术中新型氧载体CaSO4的特性研究[J]. 工程热物理学报, 2006, 27(3): 531-533. (ZHENG Ying, WANG Bao-wen, SONG Kai, ZHENG Chu-guang. The performance research on new oxygen carrier CaSO4 used in chemical-looing combustion[J]. Journal of Engineering Thermophysics, 2006, 27(3): 531-533.)

    8. [8]

      [8] 丁宁, 郑瑛, 罗聪, 郑楚光. 助剂对CaSO4载氧体化学链燃烧的影响[J]. 中国电机工程学报, 2011, 31(5): 40-47. (DING Ning, ZHENG Ying, LUO Cong, ZHENG Chu-guang. Effect of additives on CaSO4 oxygen carrier in chemical-looping combustion[J]. Proceedings of the CSEE, 2011, 31(5): 40-47.)

    9. [9]

      [9] 沈来宏, 肖军, 肖睿, 张辉. 基于CaSO4载氧体的煤化学链燃烧分离CO2研究[J]. 中国电机工程学报, 2007, 27(2): 69-74. (SHEN Lai-hong, XIAO Jun, XIAO Rui, ZHANG Hui. Chemical looping combustion of coal in interconnected fluidized beds of CaSO4 oxygen carrier[J]. Proceedings of the CSEE, 2007, 27(2): 69-74.)

    10. [10]

      [10] 田红景, 郭庆杰. 基于CaSO4的复合型载氧体在化学链燃烧系统中的应用[C]//中国颗粒学会第六届学术年会暨海峡两岸颗粒技术研讨会论文集. 上海: 中国学术期刊(光盘版)电子杂志社, 2008: 142-146. (TIAN Hong-jing, GUO Qing-jie. Investigation into compound oxygen carrier based on CaSO4 for chemical looping combustion of solid fuels[C]//6th annual conference of Chinese society of particuology cum symposium on particle technology across Taiwan straits. Shanghai: China Academic Journal (CD) E-Magazine, 2008: 142-146.)

    11. [11]

      [11] SONG Q, XIAO R, DENG Z, SHEN L, XIAO J, ZHANG M. Effect of temperature on reduction of CaSO4 oxygen carrier in chemical-looping combustion of simulated coal gas in a fluidized bed reactor[J]. Ind Eng Chem Res, 2008, 47(21): 8148-8159.

    12. [12]

      [12] SONG Q, XIAO R, DENG Z, ZHENG W, SHEN L, XIAO J. Multicycle study on chemical-looping combustion of simulated coal gas with a CaSO4 oxygen carrier in a fluidized bed reactor[J]. Energy Fuels, 2008, 22(6): 3661-3672.

    13. [13]

      [13] 郑敏, 沈来宏, 肖军, 秦翠娟. 煤化学链燃烧还原阶段的污染物抑制[J]. 工程热物理学报, 2010, 31(10): 1780-1784. (ZHENG Min, SHEN Lai-hong, XIAO Jun, QIN Cui-juan. Pollutantcontrol on reductions of CaSO4 oxygen carrier with coal in chemical looping combustion[J]. Journal of Engineering Thermophysics, 2010, 31(10): 1780-1784.)

    14. [14]

      [14] 屈利娟. 流化床煤气化技术的研究进展[J]. 煤炭转化, 2007, 30(2): 81-85. (QU Li-juan. Progress of research in the fluidized bed coal gasification technology[J]. Coal Conversion, 2007, 30(2): 81-85.)

    15. [15]

      [15] 张荣光. 常压循环流化床煤气化试验与模型研究[D]. 北京: 中国科学院工程热物理研究所, 2005. (ZHANG Rong-guang. Experiment study and modelling on coal gasification in atmosphere circulating fluidized bed[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2005.)

    16. [16]

      [16] 刘豪, 邱建荣, 熊全军, 孔凡海, 张小平, 王泉海, 肖贤云. 燃煤固体产物中含钙矿物的迁移与多相反应[J]. 中国电机工程学报, 2005, 25(11): 72-77. (LIU Hao, QIU Jian-rong, XIONG Quan-jun, KONG Fan-hai, ZHANG Xiao-ping, WANG Quan-hai, XIAO Xian-yun. Transportation and heterogeneous reactions of calcium containing minerals in coal combustion solid residues[J]. Proceedings of the CSEE, 2005, 25(11): 72-77.)

    17. [17]

      [17] 刘豪, 邱建荣, 徐朝芬, 成斌, 谢长生. 煤灰氧化物与钙基固硫产物的高温多相反应机理[J]. 中国电机工程学报, 2007, 27(32): 29-33. (LIU Hao, QIU Jian-rong, XU Chao-fen, CHENG Bin, XIE Chang-sheng. Heterogeneous reactions mechanism of oxides in coal ash and calcium-based desulfurization residues at high temperature[J]. Proceedings of the CSEE, 2007, 27(32): 29-33.)

    18. [18]

      [18] 李宁, 周俊虎, 岑可法. 高温固硫物相的研究[J]. 浙江大学学报(工学版), 2003, 37(5): 612-616. (LI Ning, ZHOU Jun-hu, CEN Ke-fa. Research on behavior of sulfation product at high temperature[J]. Journal of Zhejiang University (Engineering Science), 2003, 37(5): 612-616.)

    19. [19]

      [19] 秦翠娟, 沈来宏, 郑敏, 肖军. 不同气化介质下CaSO4载氧体的煤化学链燃烧实验研究[J]. 中国电机工程学报, 2009, 29(26): 48-55. (QIN Cui-juan, SHEN Lai-hong, ZHENG Min, XIAO Jun. Experimental study on the effect of gasification medium on chemical looping combustion of coal with CaSO4 oxygen carrier[J]. Proceedings of the CSEE, 2009, 29(26): 48-55.)

    20. [20]

      [20] 新井纪男. 燃烧生成物的发生与抑制技术[M]. 北京: 科学出版社, 2001. (ARAI Norio. The generation of outgrowth during the combustion and depression technology[M]. Beijing: Science Press, 2001.)

    21. [21]

      [21] SHEN L, ZHENG M, XIAO J, XIAO R. A mechanistic investigation of a calcium-based oxygen carrier for chemical looping combustion[J]. Combust Flame, 2008, 154(3): 489-506.

    22. [22]

      [22] ZHENG M, SHEN L, XIAO J. Reduction of CaSO4 oxygen carrier with coal in chemical-looping combustion: Effects of temperature and gasification intermediate[J]. Int J Greenh Gas Control, 2010, 4(5): 716-728.

  • 加载中
    1. [1]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    2. [2]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    3. [3]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    4. [4]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    5. [5]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    6. [6]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    7. [7]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    11. [11]

      Xiangyu ChenAihao XuDong WeiFang HuangJunjie MaHuibing HeJing Xu . Atomic cerium-doped CuOx catalysts for efficient electrocatalytic CO2 reduction to CH4. Chinese Chemical Letters, 2025, 36(1): 110175-. doi: 10.1016/j.cclet.2024.110175

    12. [12]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    13. [13]

      Longsheng ZhanYuchao WangMengjie LiuXin ZhaoDanni DengXinran ZhengJiabi JiangXiang XiongYongpeng Lei . BiVO4 as a precatalyst for CO2 electroreduction to formate at large current density. Chinese Chemical Letters, 2025, 36(3): 109695-. doi: 10.1016/j.cclet.2024.109695

    14. [14]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    15. [15]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    16. [16]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    17. [17]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    18. [18]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    19. [19]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    20. [20]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

Metrics
  • PDF Downloads(0)
  • Abstract views(453)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return