Citation: ZHANG Qian, LI Qing-feng, ZHANG Lin-xian, JING Xu-liang, YU Zhong-liang, SONG Shuang-shuang, WANG Zhi-qing, FANG Yi-tian. Experimental study on co-pyrolsysis/gasification of deoiled asphalt with different rank of coal[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(4): 392-398. shu

Experimental study on co-pyrolsysis/gasification of deoiled asphalt with different rank of coal

  • Received Date: 27 October 2013
    Available Online: 16 December 2013

    Fund Project: 国家重点基础研究发展规划(973计划,2010CB22690603) (973计划,2010CB22690603)中国科学院战略性先导科技专项(XDA07050100)。 (XDA07050100)

  • In order to find an efficient and feasible technological route to dispose and utilize deoiled asphalt (DOA, a byproduct of solvent deasphalting process), the co-pyrolysis/gasification of DOA with different rank of coal was investigated. A series of isothermal co-pyrolysis experiments were conducted in a fixed bed reactor to observe the characteristics of the char yields and the pattern of the blends. Then a set of non-isothermal experiments were performed by thermogravimetric system to evaluate the gasification characteristics of the chars of coal, DOA and the blends. It is observed that the co-pyrolysis char formed as blocks, while the char yields show that the co-pyrolysis process has no interaction between the two resources. The gasification reactivity of the DOA char is lower than that of lignite and bituminous coal char, and is a bit higher than that of anthracite char. The gasification reactivity of the blended char of DOA with lignite/bituminous coal is found higher than that of the calculated, which clearly demonstrating that the synergetic effect existed during the gasification process, and that is mainly caused by the minerals such as Ca, Fe contained in coal char.
  • 加载中
    1. [1]

      [1] HUSSEIN A, JOAO F, SHAWN T, BOB B, CHAD B, BRENT B, et al. Highlighting heavy oil[J]. Oilfield Review, 2006, 18(2): 34-53.

    2. [2]

      [2] 程之光. 重油加工技术[M]. 北京: 中国石化出版社, 1994. (CHENG Zhi-guang. Heavy oils processing technology[M]. Beijing: China Petrochemical Press, 1994.)

    3. [3]

      [3] RANA M, SAMANO V, ANCHEYTA J, DIAZ J. A review of recent advances on process technologies for upgrading of heavy oils and residua[J]. Fuel, 2007, 86(9): 1216-1231.

    4. [4]

      [4] CHEN S, JIA S, LUO Y, ZHAO S. Mild cracking solvent deasphalting: A new method for upgrading petroleum residue[J]. Fuel, 1994, 73(3): 439-442.

    5. [5]

      [5] 孙显锋, 孙学文, 许志明, 赵锁奇, 徐春明. 辽河稠油减压深度戊烷脱沥青的研究[J]. 燃料化学学报, 2010, 38(5): 565-570. (SUN Xian-feng, SUN Xue-wen, XU Zhi-ming, ZHAO Suo-qi, XU Chun-ming. Solvent deep deasphalting of Liaohe heavy oil vacuum residuum[J]. Journal of Fuel Chemistry and Technology, 2010, 38(5): 565-570.)

    6. [6]

      [6] RONALD W. Gasification process old and new: A basic review of the major technologies[J]. Energies, 2010, 3(2): 216-240.

    7. [7]

      [7] 张乾, 李庆峰, 房倚天, 张林仙. 重油残渣焦水蒸气气化反应特性的研究[J]. 燃料化学学报, 2012, 40(9): 1074-1080. (ZHANG Qian, LI Qing-feng, FANG Yi-tian, ZHANG Lin-xian. Study on steam gasification reactivity of chars from heavy oil residue[J]. Journal of Fuel Chemistry and Technology, 2012, 40(9): 1074-1080.)

    8. [8]

      [8] 孙显锋, 孙学文, 许志明, 赵锁奇, 徐春明. PGSS法用于脱油沥青颗粒的制备[J]. 高校化学工程学报, 2010, 24(2): 290-295. (SUN Xian-feng, SUN Xue-wen, XU Zhi-ming, ZHAO Suo-qi, XU Chun-ming. Preparation of de-oiled asphalt particles by PGSS proces[J]. Journal of Chemical Engineering of Chinese Universities, 2010, 24(2): 290-295.)

    9. [9]

      [9] ZHANG Q, LI Q, ZHANG L, FANG Y, WANG Z. Experimental and kinetic investigation of the pyrolysis, combustion, and gasification of deoiled asphalt[J]. J Therm Anal Calorim, 2014, 115: 1929-1938.

    10. [10]

      [10] 李庆峰, 房倚天, 张建民, 王洋, 时铭显, 孙国刚. 石油焦水蒸气气化反应特性[J]. 燃料化学学报, 2003, 31(3): 204-208. (LI Qing-feng, FANG Yi-tian, ZHANG Jian-min, WANG Yang, SHI Ming-xian, SUN Guo-gang. Steam gasification characteristics of pertroleum coke[J]. Journal of Fuel Chemistry and Technology, 2003, 31(3): 204-208.)

    11. [11]

      [11] ZHAN X, ZHOU Z, WANG F. Catalytic effect of black liquor on the gasification of petroleum coke[J]. Appl Energy, 2010, 87(5): 1710-1715.

    12. [12]

      [12] 李庆峰, 房倚天, 张建民, 王洋, 时铭显, 孙国刚. 煤灰对石油焦水蒸气气化的影响[J]. 燃烧科学与技术, 2004, 10(4): 359-362. (LI Qing-feng, FANG Yi-tian, ZHANG Jian-min, WANG Yang, SHI Ming-xian, SUN Guo-gang. Gasification of petroleum coke with additional coal ash[J]. Journal of Combustion Science and Technology, 2004, 10(4): 359-362.)

    13. [13]

      [13] SUELVES I, MOLINER R, LAZARO M. Synergetic effects in the co-pyrolysis of coal and petroleum residues: Influences of coal mineral matter and petroleum residue mass ratio[J]. J Anal Appl Pyrolysis, 2000, 55(1): 29-41.

    14. [14]

      [14] ZHAN X, JIA J, ZHOU Z, WANG F. Influence of blending methods on the co-gasification reactivity of petroleum coke and lignite[J]. Energy Convers Manage, 2011, 52(4): 1810-1814.

    15. [15]

      [15] REN H, ZHANG Y, FANG Y, WANG Y. Co-gasification behavior of meat and bone meal char and coal char[J]. Fuel Process Technol, 2011, 92(3): 298-307.

    16. [16]

      [16] FERMOSO J, GIL M, PEVIDA C, PIS J, RUBIERA F. Kinetic models comparison for non-isothermal steam gasification of coal-biomass blend chars[J]. Chem Eng J, 2010, 161(1): 276-284.

    17. [17]

      [17] 胡荣祖, 史启祯. 热分析动力学[M]. 北京: 科学出版社, 2001. (HU Rong-zu, SHI Qi-zhen. Thermal analysis kinetics[M]. Beijing: Science Press, 2001.)

    18. [18]

      [18] VYAZOVKIN S, BURNHAM A, CRIADO J, PEREZ L, POPESCU C, SBIRRAZZOULI N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermo Acta, 2011, 520(1): 1-19.

    19. [19]

      [19] 林世雄. 石油炼制工程[M]. 北京: 石油工业出版社, 2000. (LIN Shi-xiong. Petroleum refining engineering[M]. Beijing: Petroleum Industry Press, 2000.)

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    3. [3]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    4. [4]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    5. [5]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    6. [6]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    7. [7]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    8. [8]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    9. [9]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    10. [10]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    11. [11]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    12. [12]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    13. [13]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    14. [14]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    15. [15]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    16. [16]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    17. [17]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    18. [18]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    19. [19]

      Meng-Yin WangRuo-Bei HuangJian-Feng XiongJing-Hua TianJian-Feng LiZhong-Qun Tian . Critical Role and Recent Development of Separator in Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2307017-0. doi: 10.3866/PKU.WHXB202307017

    20. [20]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

Metrics
  • PDF Downloads(0)
  • Abstract views(490)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return