Citation: LIU Xiang-chun, FENG Li, WANG Xin-hua, ZHANG Man, SHI Xiao-feng. Effect of K+, Na+, Ca2+ and Mg2+ on equilibrium adsorption of water content of Shengli lignite[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(4): 385-391. shu

Effect of K+, Na+, Ca2+ and Mg2+ on equilibrium adsorption of water content of Shengli lignite

  • Corresponding author: FENG Li, 
  • Received Date: 27 October 2013
    Available Online: 22 December 2013

    Fund Project: 国家自然科学基金(51274197) (51274197)国家重点基础研究发展规划(973计划,2012CB214900)。 (973计划,2012CB214900)

  • To investigate the effects of cations on equilibrium re-adsorption water content of lignite, the acid-washed Shengli lignite was exchanged with different concentrations of K2SO4, Na2SO4, MgSO4, Ca(CH2COOH)2 solution, respectively. Ion-exchange process was characterized by the changes in wavenumber of carboxyl group and the ash contents. The equilibrium adsorption water contents of all samples were determined in a range of relative humidities. It is shown that the extent of ion-exchanged exchange in Shengli coal is in order of Ca2+>Na+>K+>Mg2+. The relative effectiveness of cations in increasing the equilibrium adsorption water content is in order of Mg2+>Ca2+>Na+≈K+. At high relative humidity, the factor that control equilibrium adsorption water content is free water molecules interactions. However, at middle relative humidity capillary force between metal cation-carboxyl group complex and capillary is more important. At low relative humidity water interactions with sorption sites which are cation-carboxyl group complex become more important.
  • 加载中
    1. [1]

      [1] 李春柱. 维多利亚褐煤科学进展[M]. 北京: 化学工业出版社, 2009. (LI Chun-zhu. Advances in the science of Victorian brown coal[M]. Beijing: Chemical Industry Press, 2009.)

    2. [2]

      [2] YU J L, TAHMASEBI A, HAN Y, YIN F K, LI X C. A review on water in low rank coals: The existence, interaction with coal structure and effects on coal utilization[J]. Fuel Process Technol, 2013, 106: 9-20.

    3. [3]

      [3] BERGINS C, HULSTON J, STRAUSS K, CHAFFEE A L. Mechanical/thermal dewatering of lignite. Part 3: Physical properties and pore structure of MTE product coals[J]. Fuel, 2007, 86 (1/2): 3-16.

    4. [4]

      [4] YI F, MARSHAL M, JACKSON W R, CHAFFEE A L, ALLARDICE D J. A comparison of adsorption isotherms using different techniques for a range of raw, water- and acid-washed lignites[J]. Fuel, 2006, 85(10/11): 1559–1565.

    5. [5]

      [5] ALLARDICE D J, CLEMOW L M, FAVAS G, JACKSON W R, MARSHALL M, SAKUROVS R. The characterisation of different forms of water in low rank coals and some hydrothermally dried products[J]. Fuel, 2003, 82(6): 661-667.

    6. [6]

      [6] NORINAGA K, KUMAGAI H, HAYASHI J, CHIBA T. Classification of water sorbed in coal on the basis of congelation characteristics[J]. Energy Fuels, 1998, 12 (3):574-579.

    7. [7]

      [7] ALLARDICE D J, CLEMOWB L M, FAVAS G, JACKSON W R, MARSHALL M, SAKUROVS R. The characterisation of different forms of water in low rank coals and some hydrothermally dried products[J]. Fuel, 2003, 82(6): 661-667.

    8. [8]

      [8] DELPHINE C, PHILIPPE B. Water sorption on coals[J]. J Colloid Interface Sci, 2010, 344(2): 460-467.

    9. [9]

      [9] SCHAFER H. Factors affecting the equilibrium moisture contents of low-rank coals[J]. Fuel, 1972, 51(1): 4-9.

    10. [10]

      [10] YI F, ZHANG C F, MARSHALL M, JACKSON W R, CHAFFEE A L, ALLARDICE D J. The effect of cation content of some raw and ion-exchanged Victoria lignites on their equilibrium moisture content and surface area[J]. Fuel, 2007, 86(17/18): 2890-2897.

    11. [11]

      [11] RAO J S, DINADAYALANE T C, LESZCZYNSKI J, SASTRY G N. Comprehensive study on the solvation of mono- and divalent metal cations: Li+, Na+, K+, Be2+, Mg2+ and Ca2+[J]. J Phys Chem A, 2008, 112(50): 12944-12953.

    12. [12]

      [12] 郝光宗, 邢丽缘, 梁强威. 饱和盐水溶液档灵度固定点(2)—数据来源与盐溶液选择[J]. 传感世界, 1999, 12: 10-14. (HAO Guang-zong, XING Li-yuan, LIANG Qiang-wei. Humidity fixed points of saturated aqueous solutions of salts[J]. Sensor world, 1999, 12:10-14.)

    13. [13]

      [13] MRINAL K B, PROBHAT K, GOBIN C B. Distribution and nature of organic/mineral bound elements in Assam coals, India[J]. Fuel, 2003, 82(14): 1783-1791.

    14. [14]

      [14] OHTSUKA Y, ASAMI K M. Ion-exchanged calcium from calcium carbonate and low-rank coals: High catalytic activity in steam gasification[J]. Energy Fuels, 1996, 10(2): 431-435.

    15. [15]

      [15] EVANGELOU V P, MARSI M, CHAPPELL M A. Potentiometric-spectroscopic evaluation of metal-ion complexes by humic fractions extracted from corn tissue[J]. Spectrochimica Acta Part A, 2002, 58(10): 2159-2175.

    16. [16]

      [16] VOGT C, WILD T, BERGINS C, STRAUB K, HULSTON J, CHAFFEE A L. Mechanical/thermal dewatering of lignite. Part 4: Physico-chemical properties and pore structure during an acid treatment within the MTE process[J]. Fuel, 2012, 93: 433-442.

    17. [17]

      [17] SERT M, BALLICE L, YüKSEL M, SAGLAM M. Effect of mineral matter on product yield in supercritical water extraction of lignite at different temperatures. J Supercrit Fluid, 2011, 57(3): 213-218.

    18. [18]

      [18] ELIGWE C A, OKOLUE N B. Adsorption of iron (II) by a Nigerian brown coal[J]. Fuel, 1994, 73 (4): 569-572.

    19. [19]

      [19] NISHINO J. Adsorption of water vapor and carbon dioxide at carboxylic functional groups on the surface of coal[J]. Fuel, 2001, 80(5): 757-764.

    20. [20]

      [20] DURIE R A. The science of Victorian brown coal[M]. Oxford: butterworth-Heinemann, 1991.

  • 加载中
    1. [1]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    2. [2]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    3. [3]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    4. [4]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    5. [5]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    6. [6]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    7. [7]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    8. [8]

      Guoze YanBin ZuoShaoqing LiuTao WangRuoyu WangJinyang BaoZhongzhou ZhaoFeifei ChuZhengtong LiYamauchi YusukeMelhi SaadXingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 2404006-0. doi: 10.3866/PKU.WHXB202404006

    9. [9]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    10. [10]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    11. [11]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    12. [12]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    13. [13]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    14. [14]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    15. [15]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    16. [16]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    17. [17]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    18. [18]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    19. [19]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    20. [20]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

Metrics
  • PDF Downloads(0)
  • Abstract views(411)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return