Citation: AN Zhong-yi, ZHUO Yu-qun, CHEN Chang-he. Influence of calcination temperature on the catalytic activity of Mn/TiO2 for NO oxidation[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(3): 370-376. shu

Influence of calcination temperature on the catalytic activity of Mn/TiO2 for NO oxidation

  • Corresponding author: ZHUO Yu-qun, 
  • Received Date: 13 September 2013
    Available Online: 25 December 2013

    Fund Project: 国家自然科学基金(51276034)。 (51276034)

  • The influence of calcination temperature on the catalytic activity of Mn-based catalysts impregnated on TiO2 for the oxidation of NO was studied. The results showed that, relatively low calcination temperature was beneficial to promote the catalytic activity of Mn/TiO2 catalysts. The catalysts were characterized by various techniques to study the influence mechanism of calcination temperature, including X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), H2 temperature programmed reduction (H2-TPR) and O2 temperature programmed desorption (O2-TPD). It could be concluded that Mn2O3 played a dominant role in the process of NO oxidation, and the relatively lower calcination temperature could enhance the percentage of Mn2O3 in MnOx, as well as promote the dispersion of MnOx on TiO2, thus raising the catalytic activity of Mn/TiO2. When the calcination temperature was higher than 500 ℃, the agglomeration began to appear, and the crystalline phase of TiO2 was transformed from anatase to rutile, Mn2O3 was, as well, transformed from amorphous phase to crystalline phase. The test results of H2-TPR and O2-TPD showed that relatively lower calcination temperature was beneficial to the reduction ability of Mn/TiO2 catalysts and the desorption of chemisorbed O2- on catalysts surface, the interaction of the two factors resulted in good mobility of chemisorbed O2- on catalysts surface, which was good for the activity of catalysts.
  • 加载中
    1. [1]

      [1] 张虎, 佟会玲, 王晋元, 陈昌和. 用KMnO4 调质钙基吸收剂从燃煤烟气同时脱硫脱硝[J]. 化工学报, 2007, 58(7): 1810-1815. (ZHANG Hu, TONG Hui-ling, WANG Jin-yuan, CHEN Chang-he. Simultaneous removal of SO2 and NO by using calcium absorbent with KMnO4 as additive[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(7): 1810-1815.)

    2. [2]

      [2] SKALSKA K, MILLER J S, LEDAKOWICZ S. Trends in NOx abatement: A review[J]. Sci Total Environ, 2010, 408(19): 3976-3989.

    3. [3]

      [3] RUGGERI M P, NOVA I, TRONCON E. Experimental study of the NO oxidation to NO2 over metal promoted zeolites aimed at the identification of the standard SCR rate determining step[J]. Top Catal, 2013, 56(1/8): 109-113.

    4. [4]

      [4] WANG Z, ZHANG X, ZHOU Z, CHEN C, ZHOU J, CEN K. Effect of additive agents on the simultaneous absorption of NO2 and SO2 in the calcium sulfite slurry[J]. Energy Fuels, 2012, 26(9): 5583-5589.

    5. [5]

      [5] 赵迎宪, 危凤, 张艳辉, 虞影. NO在 Pt/γ-Al2O3 上催化氧化反应机理和动力学[J]. 化工学报, 2008, 59(5): 1156-1164. (ZHAO Ying-xian, WEI Feng, ZHANG Yan-hui, YU Ying. Mechanism and kinetics of NO oxidation over Pt/SymbolgA@-Al2O3 catalyst[J]. Journal of Chemical Industry and Engineering(China), 2008, 59(5): 1156-1164.)

    6. [6]

      [6] LI L, SHEN Q, CHENG J, HAO Z. Catalytic oxidation of NO over TiO2 supported platinum clusters I. Preparation, characterization and catalytic properties[J]. Appl Catal B: Environ, 2010, 93(3): 259-266.

    7. [7]

      [7] YUNG M M, HOLMGREEN E M, OZKAN U S. Cobalt-based catalysts supported on titania and zirconia for the oxidation of nitric oxide to nitrogen dioxide[J]. J Catal, 2007, 247(2): 356-367.

    8. [8]

      [8] ZHANG J, ZHANG S, CAI W, ZHONG Q. The characterization of CrCe-doped on TiO2-pillared clay nanocomposites for NO oxidation and the promotion effect of CeOx[J]. Appl Surf Sci, 2013, 268: 535-540.

    9. [9]

      [9] LI K, TANG X, YI H. Mechanism of catalytic oxidation of NO over Mn-Co-Ce-Ox catalysts with the aid of nonthermal plasma at low temperature[J]. Ind Eng Chem Res, 2011, 50(19): 11023-11028.

    10. [10]

      [10] QI G, YANG R T. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst[J]. J Catal, 2003, 217(2): 434-441.

    11. [11]

      [11] QI G, YANG R T. Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania[J]. Appl Catal B: Environ, 2003, 44(3): 217-225.

    12. [12]

      [12] WU Z, TANG N, XIAO L, LIU Y, WANG H. MnOx/TiO2 composite nanoxides synthesized by deposition-precipitation method as a superior catalyst for NO oxidation[J]. J Colloid Interface Sci, 2010, 352(1): 143-148.

    13. [13]

      [13] XU W, ZHAO J, WANG H, ZHU T, LI P, JING P. Catalytic oxidation activity of NO on TiO2-supported Mn-Co composite oxide catalysts[J]. Acta Phys-Chim Sin, 2013, 29(2): 385-390.

    14. [14]

      [14] TANG X, HAO J, YI H, LL J. Low-temperature SCR of NO with NH3 over AC/C supported manganese-based monolithic catalysts[J]. Catal Today, 2007, 126(3): 406-411.

    15. [15]

      [15] PINNA F. Supported metal catalysts preparation[J]. Catal Today, 1998, 41(1): 129-137.

    16. [16]

      [16] PARK E, CHIN S, JEONG J, JURNG J. Low-temperature NO oxidation over Mn/TiO2 nanocomposite synthesized by chemical vapor condensation: Effects of Mn precursor on the surface Mn species[J]. Micropor Mesopor Mater, 2012, 163: 96-101.

    17. [17]

      [17] ETTIREDDY P R, ETTIREDDY N, MAMEDOV S, BOOLCHAND P, SMIRNIOTIS P G. Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3[J]. Appl Catal B: Environ, 2007, 76(1): 123-134.

    18. [18]

      [18] STOBBE E R, DE BOER B A, GEUS J W. The reduction and oxidation behaviour of manganese oxides[J]. Catal Today, 1999, 47(1): 161-167.

    19. [19]

      [19] MORALES M R, BARBERO B P, CADUS L E. Total oxidation of ethanol and propane over Mn-Cu mixed oxide catalysts[J]. Appl Catal B: Environ, 2006, 67(3): 229-236.

    20. [20]

      [20] DELIMARIS D, IOANNIDES T. VOC oxidation over MnOx-CeO2 catalysts prepared by a combustion method[J]. Appl Catal B: Environ, 2008, 84(1): 303-312.

    21. [21]

      [21] TANG X, HAO J, XU W, LI J. Low temperature selective catalytic reduction of NOx with NH3 over amorphous MnOx catalysts prepared by three methods[J]. Catal Commun, 2007, 8(3): 329-334.

    22. [22]

      [22] ATRIBAK I, BUENO-LóPEZ A, GARCíA-GARCíA A, NAVARRO P, FRíAS D, MONTES M. Catalytic activity for soot combustion of birnessite and cryptomelane[J]. Appl Catal B: Environ, 2010, 93(3): 267-273.

    23. [23]

      [23] CIMINO A, INDOVINA V. Catalytic activity of Mn3+ and Mn4+ ions dispersed in MgO for CO oxidation[J]. J Catal, 1974, 33(3): 493-496.

    24. [24]

      [24] KAPTEIJN F, SMGOREDJO L, ANDREML A. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia[J]. Appl Catal B: Environ, 1994, 3(2): 173-189.

    25. [25]

      [25] TRAWCZYNSKI J, BIELAK B, MISTA W. Oxidation of ethanol over supported manganese catalysts—Effect of the carrier[J]. Appl Catal B: Environ, 2005, 55(4): 277-285.

    26. [26]

      [26] LEITH I R, HOWDEN M G. Temperature-programmed reduction of mixed iron—manganese oxide catalysts in hydrogen and carbon monoxide[J]. Appl Catal, 1988, 37: 75-92.

    27. [27]

      [27] SULTANA A, SASAKI M, HAMADA H. Influence of support on the activity of Mn supported catalysts for SCR of NO with ammonia[J]. Catal Today, 2012, 185(1): 284-289.

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    4. [4]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    5. [5]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    6. [6]

      Yufan Pan Xue Ding Jiayu Lin Haiting Wu Hairong Huang Cuixue Chen Meiling Ye . Oil Cosmetics, Charming Chemistry: A Gradient Science Popularization Scheme for Cream Cosmetic Preparation. University Chemistry, 2025, 40(4): 382-389. doi: 10.12461/PKU.DXHX202406078

    7. [7]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    10. [10]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    11. [11]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    12. [12]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    13. [13]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    14. [14]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    15. [15]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    16. [16]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    17. [17]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    18. [18]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    19. [19]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    20. [20]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

Metrics
  • PDF Downloads(0)
  • Abstract views(465)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return