Citation: YAN Jing-sen, WANG Hai-yan, LI Su-kui, LI Xiao-hui. Effects of support on hydrodenitrogenation activity of nickel phosphide catalysts[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(3): 362-369. shu

Effects of support on hydrodenitrogenation activity of nickel phosphide catalysts

  • Corresponding author: WANG Hai-yan, 
  • Received Date: 19 August 2013
    Available Online: 11 October 2013

  • The effects of the support on active site formation and hydrodenitrogenation(HDN) activity of nickel phosphide catalysts were examined, using TiO2, Al2O3 and TiO2-Al2O3, composite supports. A series of TiO2-Al2O3 prepared by hydrolysis and deposition of tetrabutyl titanate on macropore Al2O3, and the supported nickel phosphide catalyst, were prepared by incipient wetness impregnation and in situ H2 reduction method. The samples were characterized by X-ray diffraction(XRD), BET surface area, transmission electron microscopy(TEM) and H2 temperature-programmed reduction(H2-TPR).Their hydrodenitrogenation(HDN) performance were evaluated on a continuous-flow fixed-bed reactor by using quinoline as the model molecules. The results showed that the TiO2-Al2O3 composite support still retained the pore properties of macropore Al2O3, and TiO2 were well dispersed on the Al2O3 surface in the form of anatase. Different supports have great influence on the reduction behaviour of the oxidic precusors and HDN activity of phosphide catalysts. The main active phase after reduction was Ni2P phase for the TiO2 and TiO2-Al2O3 supportd catalyst, but only Ni12P5 appeared for the Al2O3 supported catalyst. The order of HDN activities of nickel phosphide reduced at optimal reaction conditions was TiO2-Al2O3 > Al2O3> TiO2. TiO2-Al2O3 supported catalyst with the Ti /Al atomic ratio of 1:8 exhibited the highest HDN activity among all catalysts. The presence of TiO2 weakened the strong interaction between the Al2O3 and phosphate, and contributed to the formation of Ni2P active phase and the improvement of HDN activity.
  • 加载中
    1. [1]

      [1] OYAMA S T. Novel catalysts for advanced hydroprocessing: Transition metal phosphides[J]. J Catal, 2003, 216(2): 343-352.

    2. [2]

      [2] OYAMA S T, GOTT T, ZHAO H Y, LEE Y K. Transition metal phosphide hydroprocessing catalysts: A review[J]. Catal Today, 2009, 143(1/2): 94-107.

    3. [3]

      [3] CLARK P, OYAMA S T. Alumina-supported molybdenum phosphide hydroprocessing catalysts[J]. J Catal, 2003, 218(1): 78-87.

    4. [4]

      [4] SUN F X, WU W C, WU Z L, GUO J, WEI Z B, YANG Y X, JIANG Z X, TIAN F P, LI C. Dibenzothiophene hydrodesulfurization activity and surface sites of silica-supported MoP, Ni2P, and NiMoP catalysts[J]. J Catal, 2004, 228(2): 298-310.

    5. [5]

      [5] WANG A J, RUAN L F, TENG Y, LI X, LU M H, REN J, WANG Y, HU Y K. Hydrodesulfurization of dibenzothiophene over siliceous MCM-41-supported nickel phosphide catalysts[J]. J Catal, 2005, 229(2): 314-321.

    6. [6]

      [6] SHU Y, OYAMA S T. Synthesis, characterization, and hydrotreating activity of carbon-supported transition metal phosphide[J]. Carbon, 2005, 43(7): 1517-1532.

    7. [7]

      [7] KORANYI T I, VíT Z, PODUVAL D G, RYOO R, KIM H C, HENSEN E J M. SBA-15-supported nickel phosphide hydrotreationg catalysts[J]. J Catal, 2008, 253(1): 119-131.

    8. [8]

      [8] RAMIREZ J, MACIAS G, CEDENO L, GUTIERREZ-ALEJANDRE, A, CUEVAS R, CASTULLO P. The role of titania in supported Mo, CoMo, NiMo and NiW hydrodesulfurization catalysts: Analysis of past and new evidences[J]. Catal Today, 2004, 98(1): 19-30.

    9. [9]

      [9] DAMYANOVA S, SPOJAKINA A, JIRATIVA K. Effect of mixed titania-alumina supports on the phase composition of NiMo/TiO2-Al2O3 catalysts[J]. Appl Catal A: Gen, 1995, 125(2): 257-269.

    10. [10]

      [10] 鲁墨弘, 王安杰, 李翔, 胡永康, 单玉华. TiO2的加入对非负载的Ni2P催化剂加氢脱氮性能的促进作用[J]. 石油学报(石油加工), 2009, 25(4): 522-526. (LU Mo-hong, WANG An-jie, LI Xiang, HU Yong-kang. Effect of TiO2 addition methods on hydrodenitrogenation performance of nickel phosphide[J]. Acta Petrolei Sinica(Petroleum Processing Section.), 2009, 25(4): 496-502.)

    11. [11]

      [11] 宋华, 于洪坤, 武显春, 郭云涛. TiO2-Al2O3载体的制备及Ni2P/TiO2-Al2O3催化剂上的同时加氢脱硫和加氢脱氮反应[J]. 催化学报, 2010, 31(4): 447-453. (SONG Hua, YU Hong-kun, WU Xian-chun, GUO Yun-tao. Preparation of TiO2-Al2O3 support and simutaneous hydrodesulfurization and hydrodenitrogenation over Ni2P/TiO2-Al2O3 catalyst[J]. Chinese Journal of Catalysis, 2010, 31(4): 447-453.)

    12. [12]

      [12] OYAMA S T, WANG X, LEE Y K, BANDO K, REQUEJO F G. Effect of phosphorus content in nickel phosphide catalysts studied by XAFS and other techniques[J]. J Catal, 2002, 210(1): 207-217.

    13. [13]

      [13] WANG X, CLARK P, OYAMA S T. Synthesis, characterization, and hydrotreating activity of several iron group transition metal phosphides[J]. J Catal, 2002, 208(2): 321-331.

    14. [14]

      [14] SCHEFFER B, ARNOLDY P, MOULIJN J A. Sulfidability and hydrodesulfurization activity of Mo catalysts supported on alumina, silica and carbon[J]. J Catal, 1988, 112(2): 516-527.

    15. [15]

      [15] 辛勤, 罗孟飞. 现代催化研究方法[M]. 北京: 科学出版社, 2009: 1-41. (XIN Qin, LUO Meng-fei. Modern catalysis research methods[M]. Beijing: Science Press, 2009: 1-41.)

    16. [16]

      [16] 史媛媛. 载体焙烧温度对氧化铝负载磷化镍结构及HDC 性能的影响[D]. 天津: 天津大学, 2010. (SHI Yuan-yuan. Effect of support calcination temperature on structure and performance of Al2O3-supported nickel phosphide catalysts[D]. Tianjin: University of Tianjin, 2010.)

    17. [17]

      [17] CLARK P A, OYAMA S T. Alumina-supported molybdenum phosphidehydroprocessing catalysts[J]. J Catal, 2003, 218(1): 78-87.

    18. [18]

      [18] KAO C, TSAI S, BAHL M. Electronic properties, structure and temperature-dependent composition of nickel deposited on rutile titanium dioxide(110) surfaces[J]. Surf Sci, 1980, 95(1): 1-14.

    19. [19]

      [19] ARMBRUSTER T. Phase relations and exsolution phenomena in the system NiO-TiO2[J]. Solid State Chem, 1981, 36(3): 275-288.

    20. [20]

      [20] LI M F, LI H F. Effect of surface characteristics of different alumina on metal-support interaction and hydrodesulfurization activity[J]. Fuel, 2009, 88: 1281-1285.

    21. [21]

      [21] 鲁墨弘.磷化镍催化剂的制备及其加氢脱氮反应性能研究[D].大连: 大连理工大学, 2007. (LU Mo-hong. Preparation and performance of nickel phosphide catalyst for hydrodenitrogenation[D]. Beijing: Dalian University of Technology, 2007.)

    22. [22]

      [22] 曲本连, 柴永明, 相春娥, 张景成, 刘晨光.磷化镍和磷化钼催化剂的原位XRD研究[J].石油学报(石油加工), 2009, 25(4): 496-502. (QU Ben-lian, CHAI Yong-ming, XIANG Chun-e, ZHANG Jing-cheng. In-situ XRD study of nickel phosphide and molebednum phosphide catalysts[J]. Acta Petrolei Sinica(Petroleum Processing Section.), 2009, 25(4): 496-502.

    23. [23]

      [23] KUMAR S R, PILLAI S C, HAREESH U S, MUKUNDAN P, WARRIER K G K. Synthesis of thermally stable, high surface area anatase-alumina mixed oxides[J]. Mater Lett, 2000, 286: 43-46.

    24. [24]

      [24] SATTERFIELD C N, COCCHETTO J F. Reaction network and kinetics of the vapor-phase catalytic hydrodenitrogenation of quinoline[J]. Ind Eng Chem Proc Des Dev, 1981, 20(1): 53-62.

    25. [25]

      [25] JIAN M, PRINS R. Mechanism of the hydrodenitrogenation of quinoline over NiMo(P)/Al2O3 catalysts[J]. J Catal, 1998, 179(1): 18-27.

  • 加载中
    1. [1]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    2. [2]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    3. [3]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    4. [4]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    5. [5]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    6. [6]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    7. [7]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    9. [9]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    10. [10]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    11. [11]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    12. [12]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    13. [13]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    14. [14]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    15. [15]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    16. [16]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    19. [19]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    20. [20]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

Metrics
  • PDF Downloads(0)
  • Abstract views(393)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return