Citation: CHEN Zhong, WANG Guang-wei, YIN Feng-jun, YANG Shu, CHEN Hong-zhen, XU Yuan-jian. Reaction pathways in the supercritical water oxidation of typical alcohols[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(3): 343-349. shu

Reaction pathways in the supercritical water oxidation of typical alcohols

  • Corresponding author: XU Yuan-jian, 
  • Received Date: 23 August 2013
    Available Online: 4 November 2013

    Fund Project: 重庆市科技攻关项目(cstc2011ggC20014,cstc2012gg-sfgc20001)。 (cstc2011ggC20014,cstc2012gg-sfgc20001)

  • Supercritical water oxidation (SCWO) experiments of typical alcohols such as methanol, ethanol, isopropanol were carried out by using an innovatively designed lab scale, continuous flow gas sealed wall reactor (GSWR) to explore the reaction pathways and generalities of simple alcohols. The investigation indicates that during the supercritical water oxidation reactions, methanol has a lower conversion than ethanol and isopropanol, and with the main intermediate of formaldehyde. However, the important intermediates for SCWO of ethanol and isopropanol include acetone, acetic acid, acetaldehyde and methanol. Dehydrogenation, decomposition and polymerization reactions associated with many free radicals are involved in the supercritical water oxidation processes of all three alcohols, and three kinds of products produced, which include chemicals with the increased, unaltered and decreased carbon chain compared with the reactants, but generally speaking, the tendency of decreased carbon chain orientation dominates for the SCWO reactions of alcohols, and has the terminal products of carbon dioxide and water.
  • 加载中
    1. [1]

      [1] PORTELA J R, NEBOT E, DE LA OSSA E M. Generalized kinetics models for supercritical water oxidation of cutting oil wastes[J]. J Supercrit Fluids, 2001, 21(2): 135-145.

    2. [2]

      [2] PÉREZ I V, ROGAK S, BRANION R. Supercritical water oxidation of phenol and 2, 4-dinitrophenol[J]. J Supercrit Fluids, 2004, 30(1): 71-87.

    3. [3]

      [3] CUI B C, CUI F Y, JING G L, XU S L, HUO W J, LIU S Z. Oxidation of oily sludge in supercritical water[J]. J Hazard Mater, 2009, 165(1/3): 511-517.

    4. [4]

      [4] MARULANDA V, BOLAÑOS G. Supercritical water oxidation of a heavily PCB contaminated mineral transformer oil: Laboratory-scale data and economic assessment[J]. J Supercrit Fluid, 2010, 54(2): 258-265.

    5. [5]

      [5] VOGEL F, BLANCHARD J L D, MARRONE P A, RICE S F, WEBLEY P A, PETERS W A, SMITH K A, TESTER J W. Critical review of kinetic data for the oxidation of methanol in supercritical water[J]. J Supercrit Fluid, 2005, 34(3): 249-286.

    6. [6]

      [6] BRUNNER G. Near and supercritical water. Part 2: Oxidative processes[J]. J Supercrit Fluids, 2009, 47(3): 382-390.

    7. [7]

      [7] SAVAGE P E, ROVIRA J, STYLSKI N, MARTINO C J. Oxidation kinetics for methane/methanol mixtures in supercritical water[J]. J Supercrit Fluids, 2000, 17(2): 155-170.

    8. [8]

      [8] SAVAGE P E, YU J L, STYLSKI N, BROCK E E. Kinetics and mechanism of methane oxidation in supercritical water[J]. J Supercrit Fluids, 1998, 12(2): 141-153.

    9. [9]

      [9] ARMBRUSTER U, MARTIN A, KREPEL A. Partial oxidation of propane in sub-and supercritical water[J]. J Supercrit Fluids, 2001, 21(3): 233-243.

    10. [10]

      [10] MAHARREY S P, MILLER D R. A direct sampling mass spectrometer investigation of oxidation mechanisms for acetic acid in supercritical water[J]. J Phys Chem A, 2001, 105(24): 5860-5867.

    11. [11]

      [11] WEBLEY P A, TESTER J W. Fundamental kinetics of methane oxidation in supercritical water[J]. Energy Fuels, 1991, 5(3): 411-419.

    12. [12]

      [12] HIROSAKA K, FUKAYAMA M, WAKAMATSU K, ISHIDA Y, KITAGAWA K, HASEGAWA T. Combustion of ethanol by hydrothermal oxidation[J]. Pro combust Inst. 2007, 31(2): 3361-3367.

    13. [13]

      [13] SCHANZENBÄCHER J, YAYLOR J D, TESYER J W. Ethanol oxidation and hydrolysis rates in supercritical water[J]. J Supercrit Fluids, 2002, 22(2): 139-147.

    14. [14]

      [14] HUNTER T B, RICE S F, HANUSH R G. Raman spectroscopic measurement of oxidation in supercritical water. 2. Conversion of isopropyl alcohol to acetone[J]. Ind Eng Chem Res, 1996, 35(11): 3984-3990.

    15. [15]

      [15] ANTAL Jr M J A, CARLSSON M, XU X, ANDERSON D G M. Mechanism and kinetics of the acid-catalyzed dehydration of 1-and 2-propanol in hot compressed liquid water[J]. Ind Eng Chem Res, 1998, 37(10): 3820-3829.

    16. [16]

      [16] YANG S, WANG G, XU Y. New design of supercritical water oxidation reactor for sewage sludge treatment[J]. Adv Mater Res, 2013, 774-776: 212-215.

    17. [17]

      [17] BROCK E E, SAVAGE P E. Detailed chemical-kinetics model for supercritical water oxidation of C-1 compounds and H2[J]. AIChE J, 1995, 41(8): 1874-1888.

    18. [18]

      [18] BROCK E E, OSHIMA Y, SAVAGE P E, BARKER J R. Kinetics and mechanism of methanol oxidation in supercritical water[J]. J Phys Chem, 1996, 100(39): 15834-15842.

    19. [19]

      [19] BROCK E E, SAVAGE P E, BARKER J R. A reduced mechanism for methanol oxidation in supercritical water[J]. Chem Eng Sci, 1998, 53(5): 857-867.

    20. [20]

      [20] RICE S F, HUNTER T B, RYDÉN Å C, HANUSH R G. Raman spectroscopic measurement of oxidation in supercritical water. 1. Conversion of methanol to formaldehyde[J]. Ind Eng Chem Res, 1996, 35(7): 2161-2171.

    21. [21]

      [21] HAYASHI R, ONISHI M, SUGIYAMA M, KODA S, OSHIMA Y. Kinetic analysis on alcohol concentration and mixture effect in supercritical water oxidation of methanol and ethanol by elementary reaction model[J]. J Supercrit Fluids, 2007, 40(1): 74-83.

    22. [22]

      [22] RICE S F, CROISET E. Oxidation of simple alcohols in supercritical water. Ⅲ. Formation of intermediates from ethanol[J]. Ind Eng Chem Res, 2001, 40(1): 86-93.

    23. [23]

      [23] SAVAGE P E. Organic chemical reactions in supercritical water[J]. Chem Rev, 1999, 99(2): 603-621.

    24. [24]

      [24] MARINOV N M. A detailed chemical kinetic model for high temperature ethanol oxidation[J]. Int J Chem Kinet, 1999, 31(3): 183-220.

    25. [25]

      [25] HIROSAKA K, KOIDO K, FUKAYAMA M, OURYOJI K, HASEGAWA T. Experimental and numerical study of ethanol oxidation in sub-critical water[J]. J Supercrit Fluids, 2008, 44(3): 347-355.

    26. [26]

      [26] GOTO M, NADA T, OGATA A, KODAMA A, HIROSE T. Supercritical water oxidation for the destruction of municipal excess sludge and alcohol distillery wastewater of molasses[J]. J Supercrit Fluids, 1998, 13(1/3): 277-282.

  • 加载中
    1. [1]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    4. [4]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    5. [5]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    6. [6]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    7. [7]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    8. [8]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    9. [9]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    10. [10]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    13. [13]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    14. [14]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    15. [15]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    16. [16]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    17. [17]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    18. [18]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    19. [19]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    20. [20]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

Metrics
  • PDF Downloads(0)
  • Abstract views(383)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return