Citation: DONG Cun-zhen, WANG Xiao-han, ZENG Xiao-jun, SHAO Zhen-hua. Experimental study on the gasification kinetic parameters of biomass chars under CO2 atmosphere:Ⅰ. Activation energy[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(3): 329-335. shu

Experimental study on the gasification kinetic parameters of biomass chars under CO2 atmosphere:Ⅰ. Activation energy

  • Corresponding author: WANG Xiao-han, 
  • Received Date: 28 October 2013
    Available Online: 31 December 2013

    Fund Project: 国家自然科学基金(51276184) (51276184)国家重点基础研究发展规划(973计划,2011CB201501)。 (973计划,2011CB201501)

  • The isothermal gasification tests of 4 biomass samples were performed in CO2 atmosphere using a thermo-gravimetric analyzer at 750~1 000 ℃. The results show that the gasification reaction rate increases with increasing gasification temperature. Through the dimensionless procedure of r using r0.2, two different trends of dimensionless gasification reaction rate with carbon conversion are observed when the gasification temperature is changed. Accordingly, activation energies of the biomass chars were calculated by iso-conversion method. It is found that the activation energy of any biomass char is basically constant, not varying with the carbon conversion obviously. Activation energies of different chars are mainly affected by the inorganic mineral composition in the char and can be described in a linear function of the ratio of WC/WFC, which is E=233.9-1 005.7×(WC/WFC). It can be predicted that the intrinsic activation energy of the biomass char might tend to a certain value 234 kJ/mol if the catalytic effect of the metallic element is ignored.
  • 加载中
    1. [1]

      [1] 宋春财, 胡浩权, 朱盛维, 朱英华. 生物质秸秆热重分析及几种动力学模型结果比较[J]. 燃料化学学报, 2003, 31(4): 311-316. (SONG Chun-cai, HU Hao-quan, ZHU Sheng-wei, ZHU Ying-hua. Biomass pyrolysis and its kinetic parameters with different methods[J]. Journal of Fuel Chemistry and Technology, 2003, 31(4): 311-316.)

    2. [2]

      [2] DI BLASI C. Combustion and gasification rates of lignocellulosic chars[J]. Prog Energy Combust Sci, 2009, 35(2): 121-140.

    3. [3]

      [3] KIRKELS A F, VERBONG G P J. Biomass gasification: Still promising? A 30-year global overview[J]. Renew Sust Energy Rev, 2011, 15(1): 471-481.

    4. [4]

      [4] KAJITANI S, SUZUKI N, ASHIZAWA M, HARA S. CO2 gasification rate analysis of coal char in entrained flow coal gasifier[J]. Fuel, 2006, 85(2): 163-169.

    5. [5]

      [5] 魏志国, 黄艳琴, 阴秀丽, 吴创之. 玉米芯水解残渣热解焦气化反应性研究[J]. 燃料化学学报, 2012, 40(6): 685-691. (WEI Zhi-guo, HUANG Yan-qin, YIN Xiu-li, WU Chuang-zhi. Gasification reactivity of char from corncob hydrolysis residue[J]. Journal of Fuel Chemistry and Technology, 2012, 40(6): 685-691.)

    6. [6]

      [6] 肖瑞瑞, 陈雪莉, 王辅臣, 于广锁. 生物质半焦CO2气化反应动力学研究[J]. 太阳能学报, 2012, 33(2): 236-242. (XIAO Rui-rui, CHEN Xue-li, WANG Fu-chen, YU Guang-suo. Research on kinetics characteristics of gasification biomass semi-char with CO2 [J]. Acta Energiae Solaris Sinica, 2012, 33(2): 236-242.)

    7. [7]

      [7] 刘文钊, 余剑, 张聚伟, 高士秋, 许光文. 多孔物质气固反应动力学研究[J]. 中国科学: 化学, 2012, 42(8): 1210-1216. (LIU Wen-zhao, YU Jian, ZHANG Ju-wei, GAO Shi-qiu, XU Guang-wen. Kinetic study of reaction of porous solids[J]. Scientia Sinica Chimica, 2012, 42(8): 1210-1216.)

    8. [8]

      [8] SEO D K, LEE S K, KANG M W, HWANG J, YU T U. Gasification reactivity of biomass chars with CO2[J]. Biomass Bioenergy, 2010, 34(12): 1946-1953.

    9. [9]

      [9] CETIN E, MOGHTADERI B, GUPTA R, WALL T F. Biomass gasification kinetics: Influences of pressure and char structure[J]. Combust Sci Technol, 2005, 177(4): 765-791.

    10. [10]

      [10] OLLERO P, SERRERA A, ARJONA R, ALCANTARILLA S. The CO2 gasifcation kinetics of olive residue[J]. Biomass Bioenergy, 2003, 24(2): 151-161.

    11. [11]

      [11] LIU T, FANG Y, WANG Y. An experimental investigation into the gasification reactivity of chars prepared at high temperatures[J]. Fuel, 2008, 87(4/5): 460-466.

    12. [12]

      [12] 黄艳琴, 阴秀丽, 吴创之, 汪丛伟, 谢建军, 周肇秋, 马隆龙, 李海滨. 稻秆半焦与CO2气化反应特性的研究[J]. 燃料化学学报, 2009, 37(3): 289-295. (HUANG Yan-qin, YIN Xiu-li, WU Chuang-zhi, WANG Cong-wei, XIE Jian-jun, ZHOU Zhao-qiu, MA Long-long, LI Hai-bin. Study on CO2 gasification reactivity of rice straw chars[J]. Journal of Fuel Chemistry and Technology, 2009, 37(3): 289-295.)

    13. [13]

      [13] 杨帆, 范晓雷, 周志杰, 刘海峰, 龚欣, 于遵宏. 随机孔模型应用于煤焦与CO2气化的动力学研究[J]. 燃料化学学报, 2005, 33(6): 671-676. (YANG Fan, FAN Xiao-lei, ZHOU Zhi-jie, LIU Hai-feng, GONG Xin, YU Zun-hong. Kinetics of coal char gasification with CO2 random pore model[J]. Journal of Fuel Chemistry and Technology, 2005, 33(6): 671-676.)

    14. [14]

      [14] NAREDI P, YEBOAH Y D, PISUPATI S V. Effect of furnace purging on kinetic rate parameter determination using isothermal thermogravimetric analysis[J]. Energy Fuels, 2011, 25(11): 4937-4943.

    15. [15]

      [15] FOUGA G G, DE MICCO G, BOH A E. Kinetic study of argentinean asphaltite gasification using carbon dioxide as gasifying agent[J]. Fuel, 2011, 90(2): 674-680.

    16. [16]

      [16] YIP K, TIAN F J, HAYASHI J, WU H W. Effect of alkali and alkaline earth metallic species on biochar reactivity and syngas compositions during steam gasification[J]. Energy Fuels, 2009, 24(1): 173-181.

    17. [17]

      [17] ZHANG Y, ASHIZAWA M, KAJITANI S, MIURA K. Proposal of a semi-empirical kinetic model to reconcile with gasification reactivity profiles of biomass chars[J]. Fuel, 2008, 87(4/5): 475-481.

    18. [18]

      [18] DELECEA C S, ALMELAALARCON M, LINARESSOLANO A. Calcium-catalyzed carbon gasification in CO2 and steam[J]. Fuel, 1990, 69(1): 21-27.

  • 加载中
    1. [1]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    2. [2]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    3. [3]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    4. [4]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    5. [5]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    6. [6]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    7. [7]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    8. [8]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    9. [9]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    10. [10]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    11. [11]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    14. [14]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    15. [15]

      Xiang-Da ZhangJian-Mei HuangXiaorong ZhuChang LiuYue YinJia-Yi HuangYafei LiZhi-Yuan Gu . Auto-tandem CO2 reduction by reconstructed Cu imidazole framework isomers: Unveiling pristine MOF-mediated CO2 activation. Chinese Chemical Letters, 2025, 36(5): 109937-. doi: 10.1016/j.cclet.2024.109937

    16. [16]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    17. [17]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    18. [18]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    19. [19]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    20. [20]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

Metrics
  • PDF Downloads(0)
  • Abstract views(456)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return