Citation: ZHU Zhi-fei, WANG Li-peng, QI Hui, ZHANG Cheng, ZHAO Yong-chun, CHEN Gang, QIU Ji-hua, ZHANG Jun-ying. Emission characteristics of fine particulate matters from a 660 MW coal-fired bolier[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(3): 323-328. shu

Emission characteristics of fine particulate matters from a 660 MW coal-fired bolier

  • Corresponding author: ZHAO Yong-chun, 
  • Received Date: 22 October 2013
    Available Online: 7 December 2013

    Fund Project: 国家重点基础研究发展规划(973计划,2013CB228500) (973计划,2013CB228500)

  • Particulate matter from coal combustion is one of the most main atmospheric pollutants in urban China currently. It has caused serious damage to the environment and human health. A 3012H type automatic smoke-dust(flue-gas) monitor was used to collect PMs in front of the ESP of 1# boiler in Shajiao C power plant in Humen. The influence of boiler load and coal type on the emission characteristics of the fly ash was studied. The particle size distribution, chemical composition, mineral constituent and morphology characteristics of the fly ash were also analyzed. The results indicate that the fractions of PM1 and PM2.5 increase with the rising of boiler load, however, the concentration of the total smoke-dust decreases. The level of PM1 and PM2.5 becomes higher when the blending ratio of Yitai coal increases. The coal is easy to form coal cells containing molten spherules when burned in a high load boiler, and to form porous cenospheres when burned in a low load boiler. The mineral component of the ashes collected from different situations is similar.
  • 加载中
    1. [1]

      [1] 张君. 中国煤炭消耗量透支10年指标[J]. 能源与节能, 2011, (1): 76. (ZHANG Jun. China has overdraw the coal consumption of ten years[J]. Energy and Energy Conservation, 2011, (1): 76.)

    2. [2]

      [2] ZHANG C, YAO Q, SUN J. Characteristics of particulate matter from emissions of four typical coal-fired power plants in China[J]. Fuel Process Technol, 2005, 86(7): 757-768.

    3. [3]

      [3] MEIJ R, TEWINKEL B. The emissions and environmental impact of PM10 and trace elements from a modern coal-fired power plant equipped with ESP and wet FGD[J]. Fuel Process Technol, 2004, 85(6/7): 641-656.

    4. [4]

      [4] SMITH I M, SLOSS L L. PM10/PM2.5-Emissions and effects[M]. London: IEA Coal Research, 1998.

    5. [5]

      [5] 徐飞, 骆仲泱, 王鹏, 侯全辉, 方梦祥, 岑可法. 440t/h循环流化床锅炉颗粒物排放特性的实验研究[J]. 中国电机工程学报, 2007, 27(29): 7-11. (XU Fei, LUO Zhong-yang, WANG Peng, HOU Quan-hui, FANG Meng-xiang, CEN Ke-fa. Experimental study on the characteristics of particulate matter emitted from a 440 t/h CFB coal-fired boiler[J]. Proceedings of the CSEE, 2007, 27(29): 7-11.)

    6. [6]

      [6] 葛艳华. 十八大火电篇: 绿色发展成下一步关键词[OL]. http://www.cpnn.com.cn/zdzg/201207/t20120726_454827.html, 2012-07-26.

    7. [7]

      [7] 高翔鹏, 徐明厚, 姚洪, 韩旭, 李雄浩, 隋建才, 刘小伟. 燃煤锅炉可吸入颗粒物排放特性及其形成机理的试验研究[J]. 中国电机工程学报, 2007, 27(17): 11-17. (GAO Xiang-peng, XU Ming-hou, YAO Hong, HAN Xu, LI Xiong-hao, SUI Jian-cai, LIU Xiao-wei. Experimental study on emission characteristics and formation mechanisms of PM10 from a coal-fired boiler[J]. Proceedings of the CSEE, 2007, 27(17): 11-17.)

    8. [8]

      [8] 刘锦辉, 杨林军, 熊桂龙, 陆斌, 辛成运. LIFAC烟气脱硫中应用蒸汽相变促进细颗粒物脱除的实验研究[J]. 燃料化学学报, 2011, 39(1): 1-7. (LIU Jin-hui, YANG Lin-jun, XIONG Gui-long, LU Bin, XIN Cheng-yun. Experimental investigation on the improving removal of fine particles in LIFAC flue gas desulfurization by heterogeneous condensation[J]. Journal of Fuel Chemistry and Technology, 2011, 39(1): 1-7.)

    9. [9]

      [9] 刘小伟, 姚洪, 乔瑜, 于敦喜, 吕当振, 顾颖, 徐明厚. 燃煤电站锅炉颗粒物排放特性的实验研究[J]. 工程热物理学报, 2008, 29(6): 1055-1058. (LIU Xiao-wei, YAO Hong, QIAO Yu, YU Dun-xi, LV Dang-zhen, GU Ying, XU Ming-hou. Characteristics and composition of particulate matter from coal-fired power plants[J]. Journal of Engineering Thermophysics, 2008, 29(6): 1055-1058.)

    10. [10]

      [10] 吕建燚, 李定凯. 不同条件对煤粉燃烧后PM10、PM2.5、PM1排放影响的实验研究[J]. 中国电机工程学报, 2006, 26(20): 103-107. (LV Jian-yi, LI Ding-kai. Experimental study on PM10, PM2.5, PM1 emission features influenced by different conditions in pulverized coal combustion[J]. Proceedings of the CSEE, 2006, 26(20): 103-107.)

    11. [11]

      [11] 吕建燚, 李晶欣. 煤粉物化特性对燃烧后灰颗粒物的影响[J]. 燃料化学学报, 2011, 39(6): 419-424. (LV Jian-yi, LI Jing-xin. Influence of coal physicochemical properties on ash particulate matter after coal combustion[J]. Journal of Fuel Chemistry and Technology, 2011, 39(6): 419-424.)

    12. [12]

      [12] 刘小伟, 徐明厚, 于敦喜, 俞云, 隋建才. 燃煤过程中矿物质变化与颗粒物生成的研究. 中国电机工程学报, 2005, 25(22): 104-108. (LIU Xiao-wei, XU Ming-hou, YU Dun-xi, YU Yun, SUI Jian-cai. Coal mineral transformation on emission of particulate matters during coal combustion[J]. Proceedings of the CSEE, 2005, 25(22): 104-108.)

    13. [13]

      [13] YI H H, GUO X M, HAO J M, DUAN L, LI X H. Characteristics of inhalable particulate matter concentration and size distribution from power plants in China[J]. J Air Waste Manage Assoc, 2006, 56(9): 1243-1251.

    14. [14]

      [14] 王鹏. 燃煤电厂可吸入颗粒物排放及控制研究[D]. 杭州: 浙江大学, 2008. (WANG Peng. Study on PM2.5 emission and control in coal combustion boiler of power plants[D]. Hangzhou: Zhejiang University, 2008.)

    15. [15]

      [15] 屈成锐, 徐斌, 吴健, 刘建新, 王学涛. O2/CO2气氛下O2浓度对燃煤PM2.5形成的影响[J]. 燃料化学学报, 2013, 41(3): 356-360. (QU Cheng-rui, XU Bin, WU Jian, LIU Jian-xin, WANG Xue-tao. Effect of oxygen concentration on PM2.5 formation during coal combustion under O2/CO2 atmosphere[J]. Journal of Fuel Chemistry and Technology, 2013, 41(3): 356-360.)

    16. [16]

      [16] 郑进朗, 潘雪琴, 马果骏. 燃煤电厂的可吸入颗粒物排放[J]. 电力环境保护, 2009, 25(1): 53-55. (ZHENG Jin-lang, PAN Xue-qin, MA Guo-jun. Discussion on the RSP emission of coal-fired power plants[J]. Electric Power Environmental Protection, 2009, 25(1): 53-55.)

    17. [17]

      [17] 徐明厚, 于敦喜, 刘小伟. 燃煤可吸入颗粒物的形成与排放[M]. 北京: 科学出版社, 2009. (XU Ming-hou, YU Dun-xi, LIU Xiao-wei. Formation and emission of respirable particulate matter during coal combustion[M]. Beijing: Science Publisher, 2009.)

    18. [18]

      [18] 丁立新. 电厂锅炉原理[M]. 北京: 中国电力出版社, 2008. (DING Li-Xin. Boiler principle of power plant[M]. Beijing: China Electric Power Publisher, 2008.)

  • 加载中
    1. [1]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    2. [2]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    3. [3]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    4. [4]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    5. [5]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    6. [6]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    7. [7]

      Meiyu Lin Yuxin Fang Songzhang Shen Yaqian Duan Wenyi Liang Chi Zhang Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042

    8. [8]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    9. [9]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    10. [10]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    11. [11]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    12. [12]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    13. [13]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    14. [14]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    15. [15]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    16. [16]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    17. [17]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    18. [18]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    19. [19]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    20. [20]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

Metrics
  • PDF Downloads(0)
  • Abstract views(920)
  • HTML views(90)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return