Citation: WANG Qing, REN Li-guo, WANG Rui, BAI Jing-ru, WANG Hao-tian, YAN Yu-he. Characterization of oil shales by 13C-NMR and the simulation of pyrolysis by FLASHCHAIN[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(3): 303-308. shu

Characterization of oil shales by 13C-NMR and the simulation of pyrolysis by FLASHCHAIN

  • Corresponding author: WANG Qing, 
  • Received Date: 17 September 2013
    Available Online: 1 December 2013

    Fund Project: 国家自然科学基金(51276034)。 (51276034)

  • The carbon skeleton structure of oil shales from Gansu Yaojie mine was characterized by the 13C solid-state NMR; the chemical structure parameters of cluster in the oil shales, such as average number of carbons, aromatic carbons, aliphatic carbons and aromatic rings, were determined. TG-FTIR tests were used to obtain the yields of pyrolysis products. Considering the cluster chemical structure parameters determined by 13C solid-state NMR, the release of pyrolysis products was simulated by FLASHCHAIN. The simulation results are in good agreement with the TG-FTIR tests, proving the rationality of the model proposed.
  • 加载中
    1. [1]

      [1] 侯祥麟. 中国页岩油工业[M]. 北京: 石油工业出版社, 1984: 5-10. (HOU Xiang-lin. China shale oil industry[M]. Beijing: Petroleum Industry Press, 1984: 5-10.)

    2. [2]

      [2] QIAN J R. Geology and resources of some world oil shale deposits[J]. Oil Shale, 2003, 20(3): 193-252.

    3. [3]

      [3] 钱家麟, 尹亮. 油页岩-石油的补充能源[M]. 北京: 中国石化出版社, 2008: 1-3. (QIAN Jia-lin, YIN Liang. Oil shale-The complementary energy of petroleum[M]. Beijing: China Petrochemical Press, 2008: 1-3.)

    4. [4]

      [4] MAO K, KENNEDY G J, ALTHAUS S M, PRUSKI M. Determination of the average aromatic cluster size of fossil fuels by solid-state NMR at high magnetic field[J]. Energy Fuels, 2013, 27(2): 760-763.

    5. [5]

      [5] TONG J H, HAN X X, WANG S, JIANG X M. Evaluation of structural characteristics of huadian oil shale kerogen using direct techniques (solid-state 13C-NMR, XPS, FT-IR, and XRD)[J]. Energy Fuels, 2011, 25(9): 4006-4013.

    6. [6]

      [6] MIKNIS F P, LINDNER A W, GANNON A J, DAVIS M F, MACIEL G E. Solid state 13C-NMR studies of selected oil shales from Queensland, Australia[J]. Org Geochem, 1984, 7(3/4): 239-248.

    7. [7]

      [7] 秦匡宗, 劳永新. 茂名和抚顺油页岩组成结构的研究I. 有机质的芳碳结构[J]. 燃料化学学报, 1985, 13(2): 133-140. (QIN Kuang-zong, LAO Yong-xin. Investigation on the constitution and structure of Maoming and Fushun oil shale I: The structural components of the organic matter[J]. Journal of Fuel Chemistry and Technology, 1985, 13(2): 133-140.)

    8. [8]

      [8] NIKSA S, KERSTEIN A R. FLASHCHAIN theory for rapid coal devolatilization kinetics. 1. Formulation[J]. Energy Fuels, 1991, 5(5): 647-665.

    9. [9]

      [9] NIKSA S. FLASHCHAIN theory for rapid coal devolatilization kinetics 2. Impact of operating conditions[J]. Energy Fuels, 1991, 5(5): 665-673.

    10. [10]

      [10] NIKSA S. FLASHCHAIN theory for rapid coal devolatilization kinetics 3. Modeling the behavior of various coals[J]. Energy Fuels, 1991, 5(5): 673-683.

    11. [11]

      [11] NIKSA S. FLASHCHAIN theory for rapid coal devolatilization kinetics. 4. Predicting ultimate yields from ultimate analyses alone[J]. Energy Fuels, 1994, 8(3): 659-670.

    12. [12]

      [12] NIKSA S. FLASHCHAIN theory for rapid coal devolatilization kinetics 5. Interpreting rates of devolatilization for various coal types and operating conditions[J]. Energy Fuels, 1994, 8(3): 671-679.

    13. [13]

      [13] NIKSA S. FLASHCHAIN theory for rapid coal devolatilization kinetics 6. Predicting the evolution of fuel nitrogen from various coals[J]. Energy Fuels, 1995, 9(3): 467-478.

    14. [14]

      [14] NIKSA S. FLASHCHAIN theory for rapid coal de volatilization kinetics 7. Predicting the release of oxygen species from various coals[J]. Energy Fuels, 1996, 10(1): 173-187.

    15. [15]

      [15] NIKSA S, KERSTEIN A R. The distributed-energy chain model for rapid coal devolatilization kinetics. Part I: Formulation[J]. Combust Flame, 1986, 66(2): 95-109.

    16. [16]

      [16] NIKSA S. The distributed-energy chain model for rapid coal devolatilization kinetics part Ⅱ: Transient weight loss correlations[J]. Combust Flame, 1986, 66(2): 111-119.

    17. [17]

      [17] NIKSA S, KERSTEIN A R. On the role of macromolecular configuration in rapid coal devolatilization[J]. Fuels, 1987, 66(10): 1389-1399.

    18. [18]

      [18] NIKSA S. Modeling the devolatilization behavior of high volatile bituminous coals[J]. Symposium (International) on Combustion, 1989, 22(1): 105-114.

    19. [19]

      [19] NIKSA S. Rapid coal devolatilization as an model for equilibrium flash distillation[J]. AIChE J, 1988, 34(5): 790-802.

    20. [20]

      [20] 秦匡宗, 吴肖令. 抚顺油页岩热解成烃机理-固体13C核磁波谱技术的应用[J]. 石油学报, 1990, 69(1): 37-44. (QIN Kuang-zong, WU Xiao-ling. Fushun oil shale pyrolysis mechanism of hydrocarbon-The application of solid state 13C NMR[J]. Journal of Petroleum, 1990, 69(1): 37-44.)

    21. [21]

      [21] AXELSON D E. Spinning sideband suppression and quantitative analysis in solid state 13C NMR of fossil fuels[J]. Fuel, 1987, 66(2): 195-199.

    22. [22]

      [22] 钱琳, 孙绍增, 王东, 郭浩然, 许焕焕, 孟建强, 秦裕琨. 两种褐煤的13C-NMR特征及CPD高温快速热解模拟研究[J]. 煤炭学报, 2013, 38(3): 455-460. (QIAN Lin, SUN Shao-zeng, WANG-Dong, GUO Hao-ran, XU Huan-huan, MENG Jian-qiang, QIN Yu-kun. The 13C-NMR measurements of two types of lignite and the CPD simulation of lignite rapid pyrolysis at high temperature[J]. Journal of China coal society, 2013, 38(3): 455-460.)

    23. [23]

      [23] SOLUM M S, PUGMIRE R J, GRANT D M. 13C solid-state NMR of argonne premium coals[J]. Energy Fuels, 1989, 3(2): 187-193.

    24. [24]

      [24] XU W C, TOMITA A. Effect of coal type on the flash pyrolysis of various coals[J]. Fuels, 1987, 66(5): 627-631.

  • 加载中
    1. [1]

      Jinkang Jin Yidian Sheng Ping Lu Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054

    2. [2]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    3. [3]

      Haolin Zhan Qiyuan Fang Jiawei Liu Xiaoqi Shi Xinyu Chen Yuqing Huang Zhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Networ. Acta Physico-Chimica Sinica, 2025, 41(2): 100017-. doi: 10.3866/PKU.WHXB202310045

    4. [4]

      Haiyang Jin Yonghai Hui Yongfei Zhang Lijun Gao Yun Wang . Application and Exploration of Nuclear Magnetic Resonance Spectrometer in Undergraduate Basic Laboratory Teaching. University Chemistry, 2025, 40(3): 245-250. doi: 10.12461/PKU.DXHX202406022

    5. [5]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    6. [6]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    9. [9]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    10. [10]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    11. [11]

      Liuchuang Zhao Wenbo Chen Leqian Hu . Discussion on Improvement of Teaching Contents about Common Evaluation Parameters in Analytical Chemistry. University Chemistry, 2024, 39(2): 379-391. doi: 10.3866/PKU.DXHX202308079

    12. [12]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    13. [13]

      Yecang Tang Shan Ling Zhen Fang . Exploration of a Hierarchical and Integration-Oriented Talent Training Model in the Demonstration Center for Experimental Chemistry Education. University Chemistry, 2024, 39(7): 188-192. doi: 10.12461/PKU.DXHX202405107

    14. [14]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    15. [15]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    16. [16]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    17. [17]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    18. [18]

      Mingjie Lei Wenting Hu Kexin Lin Xiujuan Sun Haoshen Zhang Ye Qian Tongyue Kang Xiulin Wu Hailong Liao Yuan Pan Yuwei Zhang Diye Wei Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083

    19. [19]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    20. [20]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

Metrics
  • PDF Downloads(0)
  • Abstract views(578)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return