Citation: LIU Jia-peng, ZHU Zhi-ping, JIANG Hai-bo, WANG Yue, LÜ Qing-gang. Experimental study of oxygen-enriched gasification in circulating fluidized bed[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(3): 297-302. shu

Experimental study of oxygen-enriched gasification in circulating fluidized bed

  • Corresponding author: ZHU Zhi-ping, 
  • Received Date: 15 August 2013
    Available Online: 12 October 2013

  • On the test rig of oxygen-enriched gasification in circulating fluidized bed, the effects of oxygen concentration and equivalent ratio on gas components, gas production rate, cold gas efficiency and carbon conversion are investigated, when the gasification temperature is kept at 910 ℃ by adjusting steam flow. The results show that when oxygen concentration increases from 25% to 40%, N2 reduces from 48.82% to 33.83%, H2 increases from 21.47% to 27.59%, and CH4 changes little. Due to the influence of steam flow, CO decreases and CO2 increases when oxygen concentration is higher than 35%. Heat value of the gas with the oxygen concentration of 40% is 1.84 times of that with air gasification. Gas production rate decreases from 2.35 m3/kg to 2.13 m3/kg, and both of cold gas efficiency and carbon conversion increase with the increase in oxygen concentration. As equivalent ratio changes from 0.20 to 0.29, N2 reduces and then increases, H2 grows from 24.01% to 25.46% and then remains unchanged, CO and CH4 keeps reducing, CO2 keeps increasing, and gas production rate increases from 1.94 m3/kg to 2.29 m3/kg. Influenced by both stem flow and equivalent ratio, cold gas efficiency increases firstly and then decreases, and carbon conversion keeps increasing.
  • 加载中
    1. [1]

      [1] 刘耀鑫, 李润东, 杨天华, 方梦祥, 骆仲泱. 流化床常压空气部分气化和半焦燃烧的试验研究[J]. 中国电机工程学报, 2008, 28(11): 11-16. (LIU Yao-xin, LI Run-dong, YANG Tian-hua, FANG Meng-xiang, LUO Zhong-yang. Experimental study on combining partial gasification with air on a fluidized bed at atmospheric pressure and semi-coke combustion[J]. Processing of the CSEE, 2008, 28(11): 11-16.)

    2. [2]

      [2] 吴学成, 王勤辉, 骆仲泱, 方梦祥, 岑可法. 不同常压流化床煤气化方案的模型预测Ⅱ.模型预测及分析[J]. 燃料化学学报, 2004, 32(3): 292-296. (WU Xue-cheng, WANG Qin-hui, LUO Zhong-yang, FANG Meng-xiang, CEN Ke-fa. Kinetic model prediction for various coal gasification schemes in a fluidized bed.Ⅱ. Model prediction and analysis[J]. Journal of Fuel Chemistry and Technology, 2004, 32(3): 292-296.)

    3. [3]

      [3] LI X T, GRACE J R, LIM C J, WATKINSON A P, CHEN H P, KIM J R. Biomass gasification in a circulating fluidized bed[J]. Biomass Bioenergy, 2004, 26(2): 171-193.

    4. [4]

      [4] VÉLEZ J F, CHEJNE F, VALDÉS C F, EMERY E J, LONDOÑO C A. Co-gasification of Colombian coal and biomass in fluidized bed: An experimental study[J]. Fuel, 2009, 88(3): 424-430.

    5. [5]

      [5] MASTELLONE M L, ZACCARIELLO L, SANTORO D, ARENA U. The O2-enriched air gasification of coal, plastics and wood in a fluidized bed reactor[J]. Waste Management, 2012, 32(4): 733-742.

    6. [6]

      [6] SVOBODA K, POHORELY M, JEREMIÁŠA M, KAMENÍKOVÁ P, HARTMAN M, SKOBLJA S, ŠYC M. Fluidized bed gasification of coal-oil and coal-water-oil slurries by oxygen steam and oxygen CO2 mixtures[J]. Fuel Process Technol, 2012, 95(1): 16-26.

    7. [7]

      [7] 赵先国, 常杰, 吕鹏梅, 王铁军. 生物质流化床富氧气化的实验研究[J]. 燃料化学学报, 2005, 33(2): 199-204. (ZHAO Xian-guo, CHANG Jie, LV Peng-mei, WANG Tie-jun. Biomass gasification under O2-rich gas in a fluidized bed reactor[J]. Journal of Fuel Chemistry and Technology, 2005, 33(2): 199-204.)

    8. [8]

      [8] 苏德仁, 周肇秋, 谢建军, 郎林, 阴秀丽, 吴创之. 生物质流化床富氧-水蒸气气化制备合成气研究[J]. 农业机械学报, 2011, 42(3): 100-104. (SU De-ren, ZHOU Zhao-qiu, XIE Jian-jun, LANG Lin, YIN Xiu-li, WU Chuang-zhi. Biomass oxygen enriched-steam gasification in an atmospheric fluidized bed for syngas production[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(3): 100-104.)

    9. [9]

      [9] 吴创之, 阴秀丽, 徐冰燕, 罗曾凡, 刘平. 生物质富氧气化特性的研究[J]. 太阳能学报, 1997, 18(3): 237-242. (WU Chuang-zhi, YIN Xiu-li, XU Bing-yan, LUO Zeng-fan, LIU Ping. The performance study of biomass gasification with oxygen-rich air[J]. Acta Energiae Solaris Sinica, 1997, 18(3): 237-242.)

    10. [10]

      [10] MENG X M, WIEBREN D J, FU N J, VERKOOIJEN A H M. Biomass gasification in a 100 kWth steam-oxygen blown circulating fluidized bed gasifier: Effects of operational conditions on product gas distribution and tar formation[J]. Biomass Bioenergy, 2011, 35(7): 2910-2924.

    11. [11]

      [11] 周劲松, 王铁柱, 骆仲泱, 张晓东, 王树荣. 生物质焦油的催化裂解研究[J]. 燃料化学学报, 2003, 31(2): 144-148. (ZHOU Jin-song, WANG Tie-zhu, LUO Zhong-yang, ZHANG Xiao-dong, WANG Shu-rong. Catalytic cracking of biomass tar[J]. Journal of Fuel Chemistry and Technology, 2003, 31(2): 144-148.)

    12. [12]

      [12] 于遵宏, 王辅臣. 煤炭气化技术[M]. 北京: 化学工业出版社, 2010: 8, 9. (YU Zun-hong, WANG Fu-chen. Coal gasification technology[M]. Beijing: Chemical Industry Press, 2010: 8, 9.)

  • 加载中
    1. [1]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    2. [2]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    3. [3]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    4. [4]

      Liangliang Song Haoyan Liang Shunqing Li Bao Qiu Zhaoping Liu . 超高比能电池高锰富锂层状氧化物正极材料面临的挑战与解决策略. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-. doi: 10.1016/j.actphy.2025.100085

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    7. [7]

      Shanying Chen Kangning Huo Ke Qi Jingyi Li Shuxin Li Yunchao Li . A Novel Colloid Electrophoresis Experiment with the Characteristics of Resource Recycling and Inquiry-Driven Experimental Design. University Chemistry, 2024, 39(5): 274-286. doi: 10.3866/PKU.DXHX202311067

    8. [8]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    9. [9]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

Metrics
  • PDF Downloads(0)
  • Abstract views(573)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return