Citation: LI Wei-wei, LI Ke-zhong, KANG Shou-guo, ZHENG Yan, ZHANG Rong, BI Ji-cheng. Heterogeneous reaction kinetics of catalytic coal gasification[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(3): 290-296. shu

Heterogeneous reaction kinetics of catalytic coal gasification

  • Corresponding author: BI Ji-cheng, 
  • Received Date: 26 August 2013
    Available Online: 28 October 2013

    Fund Project: 国家重点基础研究发展规划(973计划,2011CB201305) (973计划,2011CB201305)国家科技支撑计划(2009BAA25B03) (2009BAA25B03)煤转化国家重点实验室自主研究课题(2011BWZ002)。 (2011BWZ002)

  • The gasification tests of Shenmu coal char were carried out in a pressured fixed bed reactor to investigate the effect of gasification agents (H2O, CO2, H2), catalyst loading, and partial pressure of hydrogen and carbon monoxide on the carbon conversion and reaction rate. The results show that the heterogeneous reaction rate is in the order of C-H2O >C-CO2>C-H2. H2 and CO inhibit the steam gasification rate to some degrees. The inhibition of CO is much greater than that of H2. The carbon conversion decreases by about 50% with the addition of only 5% CO at 700 ℃. A kinetic model is developed combined Langmuir-Hinshelwood (L-H) with the random pore model, considering the effect of catalyst loading and the partial pressure of gasification product gases. The deviation between predication and experiment value is less than 10%, indicating that the derived kinetic model is appropriate for describing the catalytic coal gasification with steam.
  • 加载中
    1. [1]

      [1] 汪家铭, 蔡洁. 煤制天然气技术发展概况与市场前景[J]. 天然气化工, 2010, 35(1): 64-70. (WANG Jia-ming, CAI Jie. Technology development and market prospects of coal-based substitute nature gas[J]. Nature Gas Chemical Industry, 2010, 35(1): 64-70.)

    2. [2]

      [2] HIRSCH R L, GALLAGHER J E, LESSARD J R R, WESSELHOFT R D. Catalytic coal gasification: An emerging technology[J]. Science, 1982, 215(4529): 121-127.

    3. [3]

      [3] 王黎, 张占涛, 陶铁托. 煤焦催化气化活性位扩展模型的研究[J]. 燃料化学学报, 2006, 34(3): 275-279. (WANG Li, ZHANG Zhan-tao, TAO Tie-tuo. Study on active extending model of coal char catalytic gasification[J]. Journal of Fuel Chemistry and Technology, 2006, 34(3): 275-279. )

    4. [4]

      [4] 王黎, 张占涛, 张丽. 煤焦催化气化的修正随机孔模型研究[J]. 西安交通大学学报, 2006, 40(3): 319-323. (WANG Li, ZHANG Zhan-tao, ZHANG Li. Study on modified random pore model of catalytic coal char gasification[J]. Journal of Xi'an Jiao Tong University, 2006, 40(3): 319-323.)

    5. [5]

      [5] 张泽凯, 王黎, 刘叶奎, 冯霄. 煤催化气化的修正缩核反应模型研究[J]. 西安交通大学学报, 2003, 37(11): 1190-1193. (ZHANG Ze-kai, WANG Li, LIU Ye-kui, FENG Xiao. Study of modified unreacted-core shrinking model of catalytic carbon gasification[J]. Journal of Xi'an Jiao Tong University, 2003, 37(11): 1190-1193.)

    6. [6]

      [6] ZHANG Y, HARA S, KAJITANI S, ASHIZAWA M. Modeling of catalytic gasification kinetics of coal char and carbon[J]. Fuel, 2010, 89(1): 152-157.

    7. [7]

      [7] SCHUMACHER W, MÜHLEN H J, HEEK K H V, JÜNTGEN H. Kinetics of K-catalysed steam and CO2 gasification in the presence of product gases[J]. Fuel, 1986, 65(10): 1360-1363.

    8. [8]

      [8] MEIJER R, KAPTEIJN F, MOULIJN J A. Kinetics of the alkali-carbonate catalysed gasification of carbon: 3. H2O gasification[J]. Fuel, 1994, 73(5): 723-730.

    9. [9]

      [9] 战书鹏, 王兴军, 洪冰清, 于广锁, 王辅臣. 褐煤催化加氢气化实验研究[J]. 燃料化学学报, 2012, 40(1): 8-14. (ZHAN Shu-peng, WANG Xing-jun, HONG Bing-qing, YU Guang-suo, WANG Fu-chen. Experimental study on catalytic hydrogasification of lignite[J]. Journal of Fuel Chemistry and Technology, 2012, 40(1): 8-14.)

    10. [10]

      [10] MÜHLEN H J, HEEK K H V, JÜNTGEN H. Kinetic studies of steam gasification of char in the presence of H2, CO2 and CO[J]. Fuel, 1985, 64(7): 944-949.

    11. [11]

      [11] FORMELLA K, LEONHARDT P, SULIMMA A, HEEK K H V, JVNTGEN H. Interaction of miners matter in coal with potassium during gasification[J]. Fuel, 1986, 65(10): 1470-1472.

    12. [12]

      [12] LEONHARDT P, SULIMMA A, HEEK K H V, JÜNTGEN H. Steam gasification of German hard coal using alkaline catalysts: Effects of carbon burn-off and ash content[J]. Fuel, 1983, 62(2): 200-204.

    13. [13]

      [13] KUBIAK H, SCHRÖTER H J, SULIMMA A, HEEK K H V. Application of K2CO3 catalysts in the coal gasification process using nuclear heat[J]. Fuel, 1983, 62(2): 242-245.

    14. [14]

      [14] WIGMANS T, HARINGA H, MOULIJN J A. Nature, activity and stability of active sites during alkali metal carbonate-catalysed gasification reactions of coal char[J]. Fuel, 1983, 62(2): 185-189.

    15. [15]

      [15] JÜNTGEN H. Application of catalysts to coal gasification process-incentives and perspectives[J]. Fuel, 1983, 62(2): 234-238.

    16. [16]

      [16] MEIJER R, LINDEN B V D, KAPTEIJN F, MOULIJN J A. The interaction of H2O, CO2, H2 and CO with the alkali-carbonate/carbon system: A thermogravimetric study[J]. Fuel, 1991, 70(2): 205-214.

    17. [17]

      [17] WALKER P L, MATSUMOTO J S, HANZAWA T, MUIRA T, ISMAIL I M K. Catalysis of gasification of coal-derived cokes and chars[J]. Fuel, 1983, 62(2): 140-149.

    18. [18]

      [18] MCKEE D W. Mechanisms of the alkali metal catalysed gasification of carbon[J]. Fuel, 1983, 62(2): 170-175.

    19. [19]

      [19] HAMILTON R T, SAMS D A, SHADMAN F. Variation of rate during potassium-Catalysed CO2 gasification of coal char[J]. Fuel, 1984, 63(7): 1008-1012.

    20. [20]

      [20] MATSUI I, KUNⅡ D, FURUSAWA T. Study of fluidized bed steam gasification of char by thermogravimetrically obtained kinetics[J]. J Chem Eng Jpn, 1985, 18(2): 105-113.

  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    3. [3]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    4. [4]

      Ying Yang Yonghan Wu Zixuan Li Lu Zhang Rongqin Lin Yefan Zhang Jiquan Liu Xiaohui Ning Yan Li Bin Cui . Visualization Simulation Experiment of Cyclic Voltammetry (CV) Based on Python. University Chemistry, 2025, 40(10): 233-242. doi: 10.12461/PKU.DXHX202412024

    5. [5]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    6. [6]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    7. [7]

      Linlin Wu Yonghua Zhou Zhongbei Li Liu Deng Younian Liu Limiao Chen Jianhan Huang . Digital Education Promoting Applied Chemistry Comprehensive Experiments: A Case Study of Catalytic Oxidation of Hydrogen Chloride and Reaction Kinetics. University Chemistry, 2025, 40(9): 273-278. doi: 10.12461/PKU.DXHX202411018

    8. [8]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    9. [9]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    10. [10]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    11. [11]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    12. [12]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    13. [13]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    14. [14]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    15. [15]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    16. [16]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    17. [17]

      Wenwen Zhang Peichao Zhang Conghao Gai Xiaoyun Chai Yan Zou Qingjie Zhao . Unveiling Kinetics at Natural Abundance: 13C NMR Isotope Effect Experiments. University Chemistry, 2025, 40(10): 203-207. doi: 10.12461/PKU.DXHX202411076

    18. [18]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    19. [19]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    20. [20]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

Metrics
  • PDF Downloads(0)
  • Abstract views(557)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return