Citation: LIU Xiao-fei, YOU Jing-lin, WANG Yuan-yuan, LU Li-ming, XIE Ying-fang, YU Li-wang, FU Qing. Raman spectroscopic study on the pyrolysis of Australian bituminous coal[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(3): 270-276. shu

Raman spectroscopic study on the pyrolysis of Australian bituminous coal

  • Received Date: 27 October 2013
    Available Online: 16 December 2013

    Fund Project: 国家自然科学基金重点项目(50932005) (50932005)国家自然科学基金(20973107,40973046) (20973107,40973046)上海市科委科技基金(12520709200) (12520709200)

  • Raman spectroscopy was applied to investigate the temperature dependent pyrolysis of Australian bituminous coal from 298 to 1 473 K in argon and nitrogen atmospheres. The results indicated that the pyrolysis of Australian bituminous coal can be divided into three stages: 298~873 K, precipitation and volatilization of small molecule compounds (original in coal or decomposed by heat treatment); 873~1 273 K, cracking and volatilization of macromolecular compounds; 1 273~1 473 K, graphitization of coke. After annealing at 1 473 K, the ordered carbon content of coke is significantly related to the atmosphere of nitrogen or argon; nitrogen is conducive to the pyrolysis of coal. Annealing or holding time exhibits little effect on coal pyrolysis and coke structure evolution; however, long holding time is helpful for the volatilization of small molecules at low temperature.
  • 加载中
    1. [1]

      [1] 张京. 金属氧化物对煤热解过程中多环芳烃排放的影响[D]. 太原: 太原理工大学, 2012. (ZHANG Jing. Influence of metal oxide on the emission of polycyclic aromatic hydrocarbons during coal pyrolysis[D]. Taiyuan: Taiyuan University of Technology, 2012.)

    2. [2]

      [2] KAWAKAMI M, KANBA K, SATO K, TAKENAKA T, GUPTA S, CHANDRATILLEKE R, SAHAJWALLA V. Characterization of thermal annealing effects on the evolution of coke carbon structure using Raman spectroscopy and X-ray diffraction[J]. ISIJ Int, 2008, 46(8): 1165-1170.

    3. [3]

      [3] 赵丽红. 煤热解与气化反应性的研究[D]. 太原: 太原理工大学, 2007. (ZHAO Li-hong. Research of reactivities of coal during pyrolysis and gasification[J]. Taiyuan: Taiyuan University of Technology, 2007.)

    4. [4]

      [4] 高晋生. 煤的热解、炼焦和煤焦油加工[M]. 北京: 化学工业出版社, 2009. (GAO Jin-sheng. The pyrolysis of coal, metallurgical and coal tar processing[M]. Beijing: Chemical Industry Press, 2009.)

    5. [5]

      [5] SONIBARE O O, HAEGER T, FOLEY S F. Structural characterization of Nigerian coals by X-ray diffraction Raman and FTIR spectroscopy[J]. Energy, 2010, 35(12): 5347-5353.

    6. [6]

      [6] SUGGATE R P, DICKINSON W W. Carbon NMR of coals: The effects of coal type and rank[J]. Int J Coal Geol, 2004, 57(1): 1-22.

    7. [7]

      [7] SAKAWA M, UNO K, HARA Y. E.s. r. study of formation of coke texture[J]. Fuel, 1983, 62(5): 585-590.

    8. [8]

      [8] TANG L, GUPTA R, SHENG C, WALL T. The char structure characterization from the coal reflectogram[J]. Fuel, 2005, 84(10): 1268-1276.

    9. [9]

      [9] FERRARI A C, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Physical Review B, 2000, 61(20): 14095-14107.

    10. [10]

      [10] GUEDES A, VALENTIM B, PRIETO, RODRIGUES S, NORONHA F. Micro-Raman spectroscopy of collotelinite, fusinite and macrinite[J]. Int J Coal Geol, 2010, 83(4): 415-422.

    11. [11]

      [11] TUINSTRA F, KOENIG J L. Raman spectrum of graphite[J]. J Chem Phys, 1970, 53: 1126-1130.

    12. [12]

      [12] FRIEDEL R A, CARLSON G L. Difficult carbonaceous materials and their infra-red and Raman spectra. Reassignments for coal spectra[J]. Fuel, 1971, 51(3): 194-198.

    13. [13]

      [13] CUESTA A, DHAMELINCOURT P, LAUREYNS J, MARTINEZ-ALONSO A, TASCN J M D. Raman microprobe studies on carbon materials[J]. Carbon, 1994, 32(8): 1523-1532.

    14. [14]

      [14] MOCHIDA I, KORAI Y, FUJITSU H, TAKESHITA K, KOMATSUBARA Y, KOBA K, MARSH H. Aspects of gasification and structure in cokes from coals[J]. Fuel, 1984, 63(1): 136-139.

    15. [15]

      [15] JOHNSON C A, PATRICK J W, THOMAS K M. Characterization of coal chars by Raman spectroscopy, X-ray diffraction and reflectance measurements[J]. Fuel, 1986, 65(9): 1284-1290.

    16. [16]

      [16] JOHNSON C A, THOMAS K M. The thermal history of char samples taken from a gasifier[J]. Fuel, 1987, 66(1): 17-21.

    17. [17]

      [17] DONG S, ALVAREZ P, PATERSON N, DUGWELL D R, KANDIYOTI R. Study on the effect of heat treatment and gasification on the carbon structure of coal chars and metallurgical cokes using Fourier Transform Raman spectroscopy[J]. Energy Fuel, 2009, 23: 1651-1661.

    18. [18]

      [18] SHENG C D. Char structure characterized by Raman spectroscopy and its correlations with combustion reactivity[J]. Fuel, 2007, 86(15): 2316-2324.

    19. [19]

      [19] YOU J L, JIANG G C, XU K D. High temperature Raman spectra of sodium disilicate crystal, glass and its liquid[J]. J Non-Cryst Solids, 2001, 282(1): 125-131.

    20. [20]

      [20] YOU, J L, JIANG, G C, HOU, H Y, CHEN H, WU Y Q, XU K D. Quantum chemistry study on superstructure and Raman spectra of binary sodium silicates[J]. J Raman Spectrosc, 2005, 36(3): 237-249.

    21. [21]

      [21] KAWAKAMI M, KARATO T, TAKENAKA T, YOKOYAMA S. Structure analysis of coke, wood charcoal and bamboo charcoal by Raman spectroscopy and their reaction rate with CO2[J]. ISIJ Int, 2005, 45(7): 1027-1034.

    22. [22]

      [22] TUINSTRA F, KOENIG J K, Raman Spectrum of Graphite[J]. J Chem Phys, 1970, 53(3): 1126-1130.

    23. [23]

      [23] MEGARITIS A. Pyrolysis of coal maceral concentrates under pf-combustion conditions (I): Changes in volatile release and char combustibility as a function of rank[J]. Fuel, 1998, 77(12): 1273-1282.

    24. [24]

      [24] 申峻, 王志忠. 不同煤阶煤炭化过程中挥发分组成及微孔变化的研究[J]. 煤炭学报, 2007, 32(6): 626-629. (SHEN Jun, WANG Zhi-zhong. Study on variation of micro-pores (<100 nm) and volatile components of different rank coals during carbonization[J]. Journal of China Coal Society, 2007, 32(6): 626-629.)

    25. [25]

      [25] MARQUES M, SUAREZ-RUIZ I, FLORES D, GUEDES A, RODRIGUES S. Correlation between optical, chemical and micro-structural parameters of high-rank coals and graphite[J]. Int J Coal Geol, 2009, 77(3/4): 377-382.

    26. [26]

      [26] GREEN P D, JOHNSON C A, THOMAS K M. Applications of laser Raman microprobe spectroscopy to the characterization of coals and cokes[J]. Fuel, 1983, 62(9): 1013-1023.

    27. [27]

      [27] CHABALALA V P, WAGNER N, POTGIETER-VERMAAK S. Investigation into the evolution of char structure using Raman spectroscopy in conjunction with coal petrography; Part 1[J]. Fuel Process Technol, 2011, 92(4): 750-756.

    28. [28]

      [28] MCCOWN M S, HARRISON D P. Pyrolysis and hydropyrolysis of Louisiana lignite[J]. Fuel, 1982, 61(11): 1149-1156.

    29. [29]

      [29] 朱廷钰, 肖云汉, 王洋. 煤热解过程气体停留时间的影响[J]. 燃烧科学与技术, 2001, 7(3): 307-310. (ZHU Ting-yu, XIAO Yun-han, WANG Yang. Effect of gas residence time on coal pyrolysis[J]. Journal of Combustions Science and Technology, 2001, 7(3): 307-310.)

    30. [30]

      [30] WANG W, THOMAS K M, POULTNEY R M, WILLMERS R R. Iron catalyzed graphitization in the blast furnace[J]. Carbon, 1995, 33(11): 1525-1535.

    31. [31]

      [31] BUSTIN R M, ROSS J V, ROUZAUD J N. Mechanisms of graphite formation from kerogen: Experimental evidence[J]. Int J Coal Geol, 1995, 28(1): 1-36.

    32. [32]

      [32] 徐秀峰, 崔洪, 顾永达, 陈诵英, 吴东. 煤焦制备条件对其气化反应性的影响[J]. 燃料化学学报, 1996, 24(5): 404-409. (XU Xiu-feng, CUI Hong, GU Yong-da, CHEN Song-ying, WU Dong. Influence of charring conditions of coal chars on their gasification reactivity by air[J]. Journal of Fuel Chemistry and Technology, 1996, 24(5): 404-409.)

  • 加载中
    1. [1]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    2. [2]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    3. [3]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    4. [4]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    5. [5]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    6. [6]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    7. [7]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    8. [8]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    9. [9]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    12. [12]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    13. [13]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    14. [14]

      Wenliang Wang Weina Wang Lixia Feng Nan Wei Sufan Wang Tian Sheng Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063

    15. [15]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    16. [16]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    17. [17]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    18. [18]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    19. [19]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    20. [20]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

Metrics
  • PDF Downloads(0)
  • Abstract views(437)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return