Citation: WANG Chao, ZHOU Wei, YIN Ren-he. Electro hydrogenation of coal in a Pb/DMF-EtOH system:Structure change of coal observed by organic solvent extraction[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(3): 262-269. shu

Electro hydrogenation of coal in a Pb/DMF-EtOH system:Structure change of coal observed by organic solvent extraction

  • Corresponding author: YIN Ren-he, 
  • Received Date: 11 November 2013
    Available Online: 3 January 2014

    Fund Project: supported by National Science Foundation of China (20873083, 21003088 and 21173144) (20873083, 21003088 and 21173144) Funding of Shanghai education commission fifth key disciplines (J50102) (J50102) State Key Laboratory of Chemical Engineering (SKL-ChE-08A01) (SKL-ChE-08A01) Innovation Foundation of Shanghai University (SHUCX112038). (SHUCX112038)

  • The electro-hydrogenation of coal on Pb electrode in a mixed dimethylformamide-ethanol (DMF-EtOH) electrolyte was investigated. The hydrogenation product was in-situ extracted from the organic solvent and characterized. The electrolysis products show a significant increase in H/C ratio, indicating increased hydrogenation efficiency. IR spectroscopy shows the reduction of C=O bond and aromatic ring, as well as the cleavage of bridge bonds, such as C-O-C, are the main reactions during the electrolysis. This is also confirmed by the increase of γ-H content measured by 1H-NMR.
  • 加载中
    1. [1]

      [1] SCHMIERS H, KÖPSEL R. Macromolecular structure of brown coal in relationship to the degradability by microorganisms[J]. Fuel Process Technol, 1997, 52(1/3): 109-114.

    2. [2]

      [2] ZOLLER D L, JOHNSTON M V, TOMIC J, WANG X, CALKINS W H. Thermogravimetry-photoionization mass spectrometry of different rank coals[J]. Energy Fuels, 1999, 13(5): 1097-1104.

    3. [3]

      [3] PIETRZAK R, WACHOWSKA H. Low temperature oxidation of coals of different rank and different sulphur content[J]. Fuel, 2003, 82(6): 705-713.

    4. [4]

      [4] LI J, YANG J, LIU Z. Hydrogenation of heavy liquids from a direct coal liquefaction residue for improved oil yield[J]. Fuel Process Technol, 2009, 90(4): 490-495.

    5. [5]

      [5] VASIREDDY S, MORREALE B, CUGINI A, SONG C, SPIVEY J J. Clean liquid fuels from direct coal liquefaction: Chemistry, catalysis, technological status and challenges[J]. Energy Environ Sci, 2011, 4(2): 311-345.

    6. [6]

      [6] BENJAMIN B M, RAAEN V F, MAUPIN P H, BROWN L L, COLLINS C J. Thermal cleavage of chemical bonds in selected coal-related structures[J]. Fuel, 1978, 57(5): 269-272.

    7. [7]

      [7] SHUI H, LIU J, WANG Z, CAO M, WEI X. Effect of pre-swelling of coal at mild temperatures on its hydro-liquefaction properties[J]. Fuel Process Technol, 2009, 90(7/8): 1047-1051.

    8. [8]

      [8] WANG Z, SHUI H, ZHU Y, GAO J. Catalysis of solid acid for the liquefaction of coal[J]. Fuel, 2009, 88(5): 885-889.

    9. [9]

      [9] LIU Z, SHI S, LI Y. Coal liquefaction technologies—Development in China and challenges in chemical reaction engineering[J]. Chem Eng Sci, 2010, 65(1): 12-17.

    10. [10]

      [10] SUGANO M, OHURA S, ENDOH R, HIRANO K, MASHIMO K. Effects of hydrogen transfer by exchanged cobalt upon liquefaction of low rank coal[J]. Fuel, 2012, 101: 228-233.

    11. [11]

      [11] SHUI H, CHEN Z, WANG Z, ZHANG D. Kinetics of Shenhua coal liquefaction catalyzed by SO4/ZrO2 solid acid[J]. Fuel, 2010, 89(1): 67-72.

    12. [12]

      [12] MIYAKE M, HAMAGUCHI M, NOMURA M. Electrochemical hydrogenation of coal with active hydrogen generated from water in a mediator/nickel powder system under ultrasonic irradiation[J]. Energy Fuels, 1989, 3(3): 362-365.

    13. [13]

      [13] REGGEL L, RAYMOND R, STEINER W, FRIEDEL R, WENDER I. Reduction of coal by lithium-ethylenediamine: Studies on a series of vitrains[J]. Fuel, 1961, 40: 339-356.

    14. [14]

      [14] GIVEN P. The distribution of hydrogen in coals and its relation to coal structure[J]. Fuel, 1960, 39: 147-153.

    15. [15]

      [15] WANG Z, LIU X, ZHAO D. Electroreduction of pretreated low temperature coal tar fraction in dimethylformamide-EtOH-H2O-tetra n-butylammonium bromide system[J]. Fuel Process Technol, 1997, 50(2/3): 131-137.

    16. [16]

      [16] JIANG H, LIU H, ZHOU W, YIN R. Study on the catalytic activity of NiB electrodes and FeS catalyst for electrochemical liquefaction of coal[J]. J Fudan Univ (Nat Sci), 2012, 15(2): 245-250.

    17. [17]

      [17] BALDWIN R, JONES K, JOSEPH J, WONG J. Voltammetry and electrolysis of coal slurries and H-coal liquids[J]. Fuel, 1981, 60(8): 739-743.

    18. [18]

      [18] LIU H, LIANG H, YANG J, YANG C, ZHOU W. The cathodic reduction process of the anodic Pb (II) oxides film formed on lead[J]. J Chinese Chem Soc, 2002, 60(3): 427-431.

    19. [19]

      [19] TIAN D, SHARMA R K, STILLER A H, STINESPRING C D, DADYBURJOR D B. Direct liquefaction of coal using ferric-sulfide-based, mixed-metal catalysts containing Mg or Mo[J]. Fuel, 1996, 75(6): 751-758.

    20. [20]

      [20] MATHEWS J P, SHARMA A. The structural alignment of coal and the analogous case of Argonne Upper Freeport coal[J]. Fuel, 2012, 95: 19-24.

    21. [21]

      [21] MATHEWS J P, VAN DUIN A C T, CHAFFEE A L. The utility of coal molecular models[J]. Fuel Process Technol, 2011, 92(4): 718-728.

    22. [22]

      [22] DOMAZETIS G, JAMES B D. Molecular models of brown coal containing inorganic species[J]. Org Geochem, 2006, 37(2): 244-259.

    23. [23]

      [23] TROMP P, MOULIJN J. Slow and rapid pyrolysis of coal[J]. NATO ASI series, Series C Math & Phys Sci, 1988, 244(37): 305-338.

    24. [24]

      [24] HATCHER P G. Chemical structural models for coalified wood (vitrinite) in low rank coal[J]. Org Geochem, 1990, 16(4/6): 959-968.

    25. [25]

      [25] CARLSON G A. Computer simulation of the molecular structure of bituminous coal[J]. Energy Fuels, 1992, 6(6): 771-778.

    26. [26]

      [26] GENIES C, MERCIER R, SILLION B, PETIAUD R, CORNET N, GEBEL G, PINERI M. Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium[J]. Polymer, 2001, 42(12): 5097-5105.

    27. [27]

      [27] CHEN C Y. Stability constants of polymer bound iminodiacetate type chelating agents with some transition metal ions[J]. J Appl Polym Sci, 2002, 86(8): 1986-1994.

    28. [28]

      [28] KIM S H, LEE S M, PARK J H, KIM J H, KOH K N, KANG S W. The preparation and spectroscopic study of self-assembled monolayers of a UV-sensitive spiroxazine dye on gold[J]. Dyes Pigm, 2000, 45(1): 51-57.

    29. [29]

      [29] JI D, LU X, HE R. Syntheses of cyclic carbonates from carbon dioxide and epoxides with metal phthalocyanines as catalyst[J]. Appl Catal A: Gen, 2000, 203(2): 329-333.

    30. [30]

      [30] ROMERO C, BALDELLI S. Sum frequency generation study of the room-temperature ionic liquids/quartz interface[J]. J Phys Chem B, 2006, 110(12): 6213-6223.

    31. [31]

      [31] TONGE P, FAUSTO R, CAREY P. FTIR studies of hydrogen bonding between [alpha],[beta]-unsaturated esters and alcohols[J]. J Mol Struct, 1996, 379(1/3): 135-142.

    32. [32]

      [32] LI W C, LU A H, GUO S C. Characterization of the microstructures of organic and carbon aerogels based upon mixed cresol-formaldehyde[J]. Carbon, 2001, 39(13): 1989-1994.

    33. [33]

      [33] DONG H, LI H, WANG E, YAN S, ZHANG J, YANG C, TAKAHASHI I, NAKASHIMA H, TORIMITSU K, HU W. Molecular orientation and field-effect transistors of a rigid rod conjugated polymer thin films[J]. J Phys Chem B, 2009, 113(13): 4176-4180.

    34. [34]

      [34] MANNA A, IMAE T, IIDA M, HISAMATSU N. Formation of silver nanoparticles from a N-hexadecylethylenediamine silver nitrate complex[J]. Langmuir, 2001, 17(19): 6000-6004.

    35. [35]

      [35] SANDFORD S A, ALÉON J, ALEXANDER CMOD, ARAKI T, BAJT S, BARATTA G A, et al. Organics captured from comet 81P/Wild 2 by the Stardust spacecraft[J]. Science, 2006, 314(5806): 1720-1724.

    36. [36]

      [36] SAJAN D, BINOY J, PRADEEP B, VENKATA KRISHNA K, KARTHA V B, JOE I H, JAYAKUMAR V S. NIR-FT Raman and infrared spectra and ab initio computations of glycinium oxalate[J]. Spectrochimi Acta Part A: Mol Biomol Spectrosco, 2004, 60(1/2): 173-180.

    37. [37]

      [37] MALLICK K, WITCOMB M, DINSMORE A, SCURRELL M. Fabrication of a metal nanoparticles and polymer nanofibers composite material by an in situ chemical synthetic route[J]. Langmuir, 2005, 21(17): 7964-7967.

    38. [38]

      [38] KANDA N, ITOH H, YOKOYAMA S, OUCHI K. Mechanism of hydrogenation of coal-derived asphaltene[J]. Fuel, 1978, 57(11): 676-680.

    39. [39]

      [39] DE ABREU Y, PATIL P, MARQUEZ A I, BOTTE G G. Characterization of electrooxidized Pittsburgh No. 8 coal[J]. Fuel, 2007, 86(4): 573-584.

  • 加载中
    1. [1]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    2. [2]

      Hong Yan Wenfeng Wang Keyin Ye Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027

    3. [3]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    4. [4]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    5. [5]

      Yan XinYunnian GeZezhong LiQiaobao ZhangHuajun Tian . Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries. Acta Physico-Chimica Sinica, 2024, 40(2): 2303060-0. doi: 10.3866/PKU.WHXB202303060

    6. [6]

      Renxiu Zhang Xin Zhao Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116

    7. [7]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    8. [8]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    9. [9]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    10. [10]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    11. [11]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    12. [12]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    13. [13]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    14. [14]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    15. [15]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    16. [16]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    17. [17]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    18. [18]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    19. [19]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    20. [20]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

Metrics
  • PDF Downloads(0)
  • Abstract views(803)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return