Citation: WANG Chao, ZHOU Wei, YIN Ren-he. Electro hydrogenation of coal in a Pb/DMF-EtOH system:Structure change of coal observed by organic solvent extraction[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(3): 262-269. shu

Electro hydrogenation of coal in a Pb/DMF-EtOH system:Structure change of coal observed by organic solvent extraction

  • Corresponding author: YIN Ren-he, 
  • Received Date: 11 November 2013
    Available Online: 3 January 2014

    Fund Project: supported by National Science Foundation of China (20873083, 21003088 and 21173144) (20873083, 21003088 and 21173144) Funding of Shanghai education commission fifth key disciplines (J50102) (J50102) State Key Laboratory of Chemical Engineering (SKL-ChE-08A01) (SKL-ChE-08A01) Innovation Foundation of Shanghai University (SHUCX112038). (SHUCX112038)

  • The electro-hydrogenation of coal on Pb electrode in a mixed dimethylformamide-ethanol (DMF-EtOH) electrolyte was investigated. The hydrogenation product was in-situ extracted from the organic solvent and characterized. The electrolysis products show a significant increase in H/C ratio, indicating increased hydrogenation efficiency. IR spectroscopy shows the reduction of C=O bond and aromatic ring, as well as the cleavage of bridge bonds, such as C-O-C, are the main reactions during the electrolysis. This is also confirmed by the increase of γ-H content measured by 1H-NMR.
  • 加载中
    1. [1]

      [1] SCHMIERS H, KÖPSEL R. Macromolecular structure of brown coal in relationship to the degradability by microorganisms[J]. Fuel Process Technol, 1997, 52(1/3): 109-114.

    2. [2]

      [2] ZOLLER D L, JOHNSTON M V, TOMIC J, WANG X, CALKINS W H. Thermogravimetry-photoionization mass spectrometry of different rank coals[J]. Energy Fuels, 1999, 13(5): 1097-1104.

    3. [3]

      [3] PIETRZAK R, WACHOWSKA H. Low temperature oxidation of coals of different rank and different sulphur content[J]. Fuel, 2003, 82(6): 705-713.

    4. [4]

      [4] LI J, YANG J, LIU Z. Hydrogenation of heavy liquids from a direct coal liquefaction residue for improved oil yield[J]. Fuel Process Technol, 2009, 90(4): 490-495.

    5. [5]

      [5] VASIREDDY S, MORREALE B, CUGINI A, SONG C, SPIVEY J J. Clean liquid fuels from direct coal liquefaction: Chemistry, catalysis, technological status and challenges[J]. Energy Environ Sci, 2011, 4(2): 311-345.

    6. [6]

      [6] BENJAMIN B M, RAAEN V F, MAUPIN P H, BROWN L L, COLLINS C J. Thermal cleavage of chemical bonds in selected coal-related structures[J]. Fuel, 1978, 57(5): 269-272.

    7. [7]

      [7] SHUI H, LIU J, WANG Z, CAO M, WEI X. Effect of pre-swelling of coal at mild temperatures on its hydro-liquefaction properties[J]. Fuel Process Technol, 2009, 90(7/8): 1047-1051.

    8. [8]

      [8] WANG Z, SHUI H, ZHU Y, GAO J. Catalysis of solid acid for the liquefaction of coal[J]. Fuel, 2009, 88(5): 885-889.

    9. [9]

      [9] LIU Z, SHI S, LI Y. Coal liquefaction technologies—Development in China and challenges in chemical reaction engineering[J]. Chem Eng Sci, 2010, 65(1): 12-17.

    10. [10]

      [10] SUGANO M, OHURA S, ENDOH R, HIRANO K, MASHIMO K. Effects of hydrogen transfer by exchanged cobalt upon liquefaction of low rank coal[J]. Fuel, 2012, 101: 228-233.

    11. [11]

      [11] SHUI H, CHEN Z, WANG Z, ZHANG D. Kinetics of Shenhua coal liquefaction catalyzed by SO4/ZrO2 solid acid[J]. Fuel, 2010, 89(1): 67-72.

    12. [12]

      [12] MIYAKE M, HAMAGUCHI M, NOMURA M. Electrochemical hydrogenation of coal with active hydrogen generated from water in a mediator/nickel powder system under ultrasonic irradiation[J]. Energy Fuels, 1989, 3(3): 362-365.

    13. [13]

      [13] REGGEL L, RAYMOND R, STEINER W, FRIEDEL R, WENDER I. Reduction of coal by lithium-ethylenediamine: Studies on a series of vitrains[J]. Fuel, 1961, 40: 339-356.

    14. [14]

      [14] GIVEN P. The distribution of hydrogen in coals and its relation to coal structure[J]. Fuel, 1960, 39: 147-153.

    15. [15]

      [15] WANG Z, LIU X, ZHAO D. Electroreduction of pretreated low temperature coal tar fraction in dimethylformamide-EtOH-H2O-tetra n-butylammonium bromide system[J]. Fuel Process Technol, 1997, 50(2/3): 131-137.

    16. [16]

      [16] JIANG H, LIU H, ZHOU W, YIN R. Study on the catalytic activity of NiB electrodes and FeS catalyst for electrochemical liquefaction of coal[J]. J Fudan Univ (Nat Sci), 2012, 15(2): 245-250.

    17. [17]

      [17] BALDWIN R, JONES K, JOSEPH J, WONG J. Voltammetry and electrolysis of coal slurries and H-coal liquids[J]. Fuel, 1981, 60(8): 739-743.

    18. [18]

      [18] LIU H, LIANG H, YANG J, YANG C, ZHOU W. The cathodic reduction process of the anodic Pb (II) oxides film formed on lead[J]. J Chinese Chem Soc, 2002, 60(3): 427-431.

    19. [19]

      [19] TIAN D, SHARMA R K, STILLER A H, STINESPRING C D, DADYBURJOR D B. Direct liquefaction of coal using ferric-sulfide-based, mixed-metal catalysts containing Mg or Mo[J]. Fuel, 1996, 75(6): 751-758.

    20. [20]

      [20] MATHEWS J P, SHARMA A. The structural alignment of coal and the analogous case of Argonne Upper Freeport coal[J]. Fuel, 2012, 95: 19-24.

    21. [21]

      [21] MATHEWS J P, VAN DUIN A C T, CHAFFEE A L. The utility of coal molecular models[J]. Fuel Process Technol, 2011, 92(4): 718-728.

    22. [22]

      [22] DOMAZETIS G, JAMES B D. Molecular models of brown coal containing inorganic species[J]. Org Geochem, 2006, 37(2): 244-259.

    23. [23]

      [23] TROMP P, MOULIJN J. Slow and rapid pyrolysis of coal[J]. NATO ASI series, Series C Math & Phys Sci, 1988, 244(37): 305-338.

    24. [24]

      [24] HATCHER P G. Chemical structural models for coalified wood (vitrinite) in low rank coal[J]. Org Geochem, 1990, 16(4/6): 959-968.

    25. [25]

      [25] CARLSON G A. Computer simulation of the molecular structure of bituminous coal[J]. Energy Fuels, 1992, 6(6): 771-778.

    26. [26]

      [26] GENIES C, MERCIER R, SILLION B, PETIAUD R, CORNET N, GEBEL G, PINERI M. Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium[J]. Polymer, 2001, 42(12): 5097-5105.

    27. [27]

      [27] CHEN C Y. Stability constants of polymer bound iminodiacetate type chelating agents with some transition metal ions[J]. J Appl Polym Sci, 2002, 86(8): 1986-1994.

    28. [28]

      [28] KIM S H, LEE S M, PARK J H, KIM J H, KOH K N, KANG S W. The preparation and spectroscopic study of self-assembled monolayers of a UV-sensitive spiroxazine dye on gold[J]. Dyes Pigm, 2000, 45(1): 51-57.

    29. [29]

      [29] JI D, LU X, HE R. Syntheses of cyclic carbonates from carbon dioxide and epoxides with metal phthalocyanines as catalyst[J]. Appl Catal A: Gen, 2000, 203(2): 329-333.

    30. [30]

      [30] ROMERO C, BALDELLI S. Sum frequency generation study of the room-temperature ionic liquids/quartz interface[J]. J Phys Chem B, 2006, 110(12): 6213-6223.

    31. [31]

      [31] TONGE P, FAUSTO R, CAREY P. FTIR studies of hydrogen bonding between [alpha],[beta]-unsaturated esters and alcohols[J]. J Mol Struct, 1996, 379(1/3): 135-142.

    32. [32]

      [32] LI W C, LU A H, GUO S C. Characterization of the microstructures of organic and carbon aerogels based upon mixed cresol-formaldehyde[J]. Carbon, 2001, 39(13): 1989-1994.

    33. [33]

      [33] DONG H, LI H, WANG E, YAN S, ZHANG J, YANG C, TAKAHASHI I, NAKASHIMA H, TORIMITSU K, HU W. Molecular orientation and field-effect transistors of a rigid rod conjugated polymer thin films[J]. J Phys Chem B, 2009, 113(13): 4176-4180.

    34. [34]

      [34] MANNA A, IMAE T, IIDA M, HISAMATSU N. Formation of silver nanoparticles from a N-hexadecylethylenediamine silver nitrate complex[J]. Langmuir, 2001, 17(19): 6000-6004.

    35. [35]

      [35] SANDFORD S A, ALÉON J, ALEXANDER CMOD, ARAKI T, BAJT S, BARATTA G A, et al. Organics captured from comet 81P/Wild 2 by the Stardust spacecraft[J]. Science, 2006, 314(5806): 1720-1724.

    36. [36]

      [36] SAJAN D, BINOY J, PRADEEP B, VENKATA KRISHNA K, KARTHA V B, JOE I H, JAYAKUMAR V S. NIR-FT Raman and infrared spectra and ab initio computations of glycinium oxalate[J]. Spectrochimi Acta Part A: Mol Biomol Spectrosco, 2004, 60(1/2): 173-180.

    37. [37]

      [37] MALLICK K, WITCOMB M, DINSMORE A, SCURRELL M. Fabrication of a metal nanoparticles and polymer nanofibers composite material by an in situ chemical synthetic route[J]. Langmuir, 2005, 21(17): 7964-7967.

    38. [38]

      [38] KANDA N, ITOH H, YOKOYAMA S, OUCHI K. Mechanism of hydrogenation of coal-derived asphaltene[J]. Fuel, 1978, 57(11): 676-680.

    39. [39]

      [39] DE ABREU Y, PATIL P, MARQUEZ A I, BOTTE G G. Characterization of electrooxidized Pittsburgh No. 8 coal[J]. Fuel, 2007, 86(4): 573-584.

  • 加载中
    1. [1]

      Hong Yan Wenfeng Wang Keyin Ye Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027

    2. [2]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    3. [3]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    4. [4]

      Renxiu Zhang Xin Zhao Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116

    5. [5]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    6. [6]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    7. [7]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    8. [8]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    9. [9]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    10. [10]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    11. [11]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    12. [12]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    13. [13]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    14. [14]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    15. [15]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    16. [16]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    17. [17]

      Yu Peng Jiawei Chen Yue Yin Yongjie Cao Mochou Liao Congxiao Wang Xiaoli Dong Yongyao Xia . 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-. doi: 10.1016/j.actphy.2025.100087

    18. [18]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    19. [19]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    20. [20]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

Metrics
  • PDF Downloads(0)
  • Abstract views(774)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return