Citation: DI Zuo-xing, LI Jian-qing, MIAO Peng-jie, LI Zhuo, WU Jin-hu. Effects of crystallization time on structure and reaction performance of ZSM-5/MCM-48 composite catalyst for MTG[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(2): 225-230. shu

Effects of crystallization time on structure and reaction performance of ZSM-5/MCM-48 composite catalyst for MTG

  • Corresponding author: WU Jin-hu, 
  • Received Date: 11 May 2013
    Available Online: 19 July 2013

    Fund Project: 中国科学院战略先导专项(XDA07070302) (XDA07070302)“十二五”国家科技支撑计划(2011BAD22B06) (2011BAD22B06)中国科学院对外合作重点项目(GJHZ1025) (GJHZ1025)中国科学院重大科研装备研制项目(2011022) (2011022)山东省“泰山学者”岗位项目(ts200824085)。 (ts200824085)

  • ZSM-5/MCM-48 micro/mesoporous composite materials were successfully prepared by using a two-step synthesis route. XRD, N2 adsorption SEM, TEM, FT-IR, and Py-FTIR were used to characterize the effects of the different crystallization time on the structure, surface acidity and reaction performance of methanol to gasoline. The results indicated that, the catalytic mechanism is the surface modification of mesoporous MCM-48 to microporous ZSM-5. Compared with the conventional ZSM-5 based catalyst, it was found that ZSM-5/MCM-48 composite catalyst had excellent low temperature activity and selectivity of gasoline fraction in MTG reaction, and significantly reduced the yield of total aromatic and durene in the oil.
  • 加载中
    1. [1]

      [1] KUO J C W, HILL C. Conversion of methanol to gasoline components: US, 3931349. 1976-01-06.

    2. [2]

      [2] CHANG C D. Methanol Conversion to light olefins[J]. Catal Rev Sci Eng, 1984, 26(3/4): 323-345.

    3. [3]

      [3] NAYAK V S, CHOUDHARY V R. Effeet of hydrothermal treatments on aeid distribution and catalytic properties of HZSM-5[J]. Appl Catal A: Gen, 1984, 10(2): 137-145.

    4. [4]

      [4] TABAK S A, YUREHAK S. Conversion of methanol over ZSM-5 to fuels and chemicals[J]. Catal Today, 1990, 6(3): 307-308.

    5. [5]

      [5] FREEMAN D, WELLS R P K, HUTCHINGS G J. Conversion of methanol to hydrocarbons over Ga2O3/H-ZSM-5 and Ga2O3/WO3 catalysts[J]. J Catal, 2002, 205(2): 358-360.

    6. [6]

      [6] ZAIDI H A, PANT K K. Catalytic conversion of methanol to gasoline range hydrocarbons[J]. Catal Today, 2004, 96: 155-160.

    7. [7]

      [7] 胡津仙, 胡靖文, 王俊杰, 相宏伟, 李永旺. 甲醇在不同酸性ZSM-5上转化为汽油的研究[J]. 天然气化工, 2001, 26(6): l-3. (HU Jin-xian, HU Jing-wen, WANG Jun-jie, XIANG Hong-wei, LI Yong-wang. A study of methanol converion to gasoline on different acidic ZSM-5[J]. Nat Gas Ind, 2001, 26(6): l-3.)

    8. [8]

      [8] DI Z X, YANG C, JIAO X J, LI J Q, WU J H, ZHANG D K. A ZSM-5/MCM-48 based catalyst for methanol to gasoline conversion[J]. Fuel, 2013, 104: 878-881.

    9. [9]

      [9] 李建青, 焦雪静, 狄佐星, 宋建军, 杨成, 吴晋沪. ZSM-5/MCM-48复合分子筛基催化剂上甲醇制汽油反应工艺条件的研究[J]. 石油化工, 2012, 41(6): 630-632. (LI Jian-qing, JIAO Xue-jing, DI Zuo-xing, SONG Jian-jun, YANG Cheng, WU Jin-hu. Study on the reaction conditions of methanol to gasoline on ZSM-5/MCM-48 based catalyst[J]. Petrochemical Technology, 2012, 41(6): 630-632.)

    10. [10]

      [10] 焦雪静. ZSM-5/MCM-48复合材料催化甲醇制汽油[D]. 青岛: 中国科学院青岛生物能源与过程研究所, 2011. (JIAO Xue-jing. Conversion of methanol to gasoline over ZSM-5/MCM-48 composite materials[D]. Qingdao: Qingdao Institute of Bioenergy and Bioprocess Techbology, Chinese Academy of Sciences, 2011.)

    11. [11]

      [11] 周志华, 鲁金明, 巫树蜂, 周敬林, 王金渠. 两步晶化法制备MCM-48/ZSM-5复合分子筛[J]. 无机材料学报, 2009, 24(2): 325-329. (ZHOU Zhi-hua, LU Jin-ming, WU Shu-feng, ZHOU Jing-lin, WANG Jin-qu. Synthesis of MCM-48/ZSM-5 composite molecular sieve by two-step crystallization[J]. Journal of Inorganic Materials, 2009, 24(2): 325-329.)

    12. [12]

      [12] XIA Y D, MOKAYA R. On the synthesis and characterization of ZSM-5/MCM-48 aluminosilicate composite materials[J]. J Mater Chem, 2004, 14: 863-870.

    13. [13]

      [13] HE C, LI J J, LI P, CHENG J, HAO Z P, XU Z P. Comprehensive investigation of Pd/ZSM-5/MCM-48 composite catalysts with enhanced activity and stability for benzene oxidation[J]. Appl Catal B: Environ, 2010, 96(3/4): 466-475.

  • 加载中
    1. [1]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    2. [2]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    3. [3]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    4. [4]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    5. [5]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    6. [6]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    7. [7]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    8. [8]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    9. [9]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    10. [10]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    11. [11]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    12. [12]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    13. [13]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    14. [14]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    15. [15]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    16. [16]

      Xuexia He Zhibin Lei Pei Chen Qi Li Weiyu Deng Peng Hu . 以“溶度积规则”指导电荷转移共晶沉淀析出——材料类专业无机化学教学改革案例. University Chemistry, 2025, 40(8): 1-10. doi: 10.12461/PKU.DXHX202410099

    17. [17]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    18. [18]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    19. [19]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    20. [20]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

Metrics
  • PDF Downloads(0)
  • Abstract views(531)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return