Citation: GAO Xin-hua, WANG Yi-lan, LU Shi-peng, ZHANG Jian-li, FAN Su-bing, ZHAO Tian-sheng. Preparation of Fe-Zr catalyst by microwave-hydrothermal method and its catalytic performance for the direct synthesis of light olefins from CO hydrogenation[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(2): 219-224. shu

Preparation of Fe-Zr catalyst by microwave-hydrothermal method and its catalytic performance for the direct synthesis of light olefins from CO hydrogenation

  • Corresponding author: ZHANG Jian-li,  ZHAO Tian-sheng, 
  • Received Date: 25 October 2013
    Available Online: 25 November 2013

    Fund Project: 国家自然科学基金(21366025) (21366025)国家重点基础研究发展规划(973计划,2012CB723106) (973计划,2012CB723106)

  • A series of Fe-Zr catalysts with different Fe2O3/ZrO2 molar ratios were prepared using ZrO(NO3)2·2H2O and Fe(NO3)3·9H2O as raw materials by means of microwave-hydrothermal method. Then,the catalysts were promoted with potassium by impregnation. The samples were characterized by XRD,SEM,TEM and N2 adsorption-desorption methods. The results showed that the catalysts prepared by microwave-hydrothermal method have a narrow particle size distribution,a lower BET specific surface area and a larger pore size compared with the traditional precipitation method. During the subsequent CO hydrogenation,it was shown that the product distribution was significantly improved with the addition of zirconium,and the suitable interaction between Fe-Zr and proper pore size were favorable for inhibiting the methane formation and enhance the olefin selectivity. With decreasing the Fe2O3/ZrO2 molar ratio,the interaction between Fe and Zr was strengthened,and the olefin selectivity and productivity first increased and then decreased. An olefin to paraffin ratio of 4.86 and light olefin productivity of 62.57 g/m3 could be obtained with a Fe2O3/ZrO2 molar ratio of 75:25 under conditions of H2/CO=2,340 ℃,1.5 MPa and 1 000 h-1.
  • 加载中
    1. [1]

      [1] TORRES GALVIS H M, DE JONG K P. Catalysts for production of lower olefins from synthesis gas: A review[J]. ACS Catal, 2013, 3(9): 2130-2149.

    2. [2]

      [2] ZHANG Q H, DENG W P, WANG Y. Recent advances in understanding the key catalyst factors for Fischer-Tropsch synthesis[J]. J Energy Chem, 2013, 22(1): 27-38.

    3. [3]

      [3] TORRES GALVIS H M, BITTER J H, KHARE C B, RUITENBEEK M, IULIAN DUGULAN A, DE JONG K P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science, 2012, 335(6070): 835-838.

    4. [4]

      [4] 董丽, 杨学萍. 合成气直接制低碳烯烃技术发展前景[J]. 石油化工, 2012, 41(10): 1201-1206. (DONG Li, YANG Xue-ping. New advances in direct production of light olefins from syngas[J]. Petrochemical Technology, 2012, 41(10): 1201-1206.)

    5. [5]

      [5] 胡徐腾, 李振宇, 黄格省. 非石油原料生产烯烃技术现状分析与前景展望[J]. 石油化工, 2012, 41(8): 869-875. (HU Xu-teng, LI Zhen-yu, HUANG Ge-sheng. Present situation and prospect of olefin production technology from non-petroleum raw materials[J]. Petrochemical Technology, 2012, 41(8): 869-875.)

    6. [6]

      [6] CALDERONE V R, SHIJU N R, CURULLA-FERRÉD, CHAMBREY S, KHODAKOV A, ROSE A, THIESSEN J, JESS A, ROTHENBERG G. De novo design of nanostructured iron-cobalt Fischer-Tropsch catalysts[J]. Angew Chem Int Ed, 2013, 125(16): 4493-4497.

    7. [7]

      [7] YANG C, ZHAO H B, HOU Y L, MA D. Fe5C2 nanoparticles: A facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis[J]. J Am Chem Soc, 2012, 134(38): 15814-15821.

    8. [8]

      [8] WANG C F, PAN X L, BAO X H. Direct production of light olefins from syngas over a carbon nanotube confined iron catalyst[J]. Chinese Science Bulletin, 2010, 55(12): 1117-1119.

    9. [9]

      [9] 王虎林, 杨勇, 王洪, 相宏伟, 李永旺. Zn对沉淀铁催化剂结构及其F-T合成性能的影响[J]. 燃料化学学报, 2012, 40(1): 59-67. (WANG Hu-lin, YANG Yong, WANG Hong, XIANG Hong-wei, LI Yong-wang. Effects of Zn promoter on the structure and Fischer-Tropsch performance of iron catalyst[J]. Journal of Fuel Chemistry and Technology, 2012, 40(1): 59-67.)

    10. [10]

      [10] TORRES GALVIS H M, BITTER J H, DAVIDIAN T, RUITENBEEK M, IULIAN DUGULAN A, DE JONG K P. Iron particle size effects for direct production of lower olefins from synthesis gas[J]. J Am Chem Soc, 2012, 134(39): 16207-16215.

    11. [11]

      [11] ZHANG J L, FAN S B, ZHAO T S, LI W H, SUN Y H. Carbon modified Fe-Mn-K catalyst for the synthesis of light olefins from CO hydrogenation[J]. React Kinet Mech Cat, 2011, 102(2): 437-445.

    12. [12]

      [12] STEINER J, BAY K, WERNER V, AMANN J, BUNZEL S, MOβBACHER C, MÜLLER J, SCHWAB E, WEBER M. Iron-and manganese-comprising heterogeneous catalyst and process for preparing olefins by reacting carbon monoxide with hydrogen: US, 0112205A1[P]. 2011-5-12.

    13. [13]

      [13] FERRINI C. Process for the production of light olefins from synthesis gas: WO, 141374A1[P]. 2011-11-17.

    14. [14]

      [14] CARPENTER D. Method and apparatus for forming nano-particles: US, 7282167B2[P]. 2007-10-16.

    15. [15]

      [15] 汪根存, 张侃, 刘平, 惠海涛, 李文怀, 谭猗生. Fe-Mn催化剂浆态床合成低碳烯烃的反应性能[J]. 石油化工, 2012, 41(11): 1234-1238. (WANG Gen-cun, ZHANG Kan, LIU-Ping, HUI Hai-tao, LI Wen-huai, TAN Yi-sheng. Performance of Fe-Mn catalyst for preparation of light olefins in slurry bed reactor[J]. Petrochemical Technology, 2012, 41(11): 1234-1238.)

    16. [16]

      [16] ZHANG W, GAO R, SU G, YIN Y. Light olefins formation from syngas over ZrO2-ZnO catalysts[J]. Stud Surf Sci Catal, 1993, 75(3): 2793-2796.

    17. [17]

      [17] 张皓荐, 马宏方, 张海涛, 应卫勇, 房鼎业. Zr助剂对铁基催化剂F-T合成性能的影响[J]. 天然气化工(C1化学与化工), 2012, 37(2): 12-16. (ZHANG Hao-jian, MA Hong-fang, ZHANG Hai-tao, YING Wei-yong, FANG Ding-ye. Effect of Zr promoter on iron-based catalyst for Fischer-Tropsch synthesis[J]. Natural Gas Chemical Industry, 2012, 37(2): 12-16.)

    18. [18]

      [18] BONDIOLI F, FERRARI A M, LEONELLI C, SILIGARDI C, PELLACANI G C. Microwave-hydrothermal synthesis of nanocrystalline zirconia powders[J]. J Am Ceram Soc, 2001, 84(11): 2728-2730.

    19. [19]

      [19] KOMARNENI S, PIDUGU R, LI Q H, ROY R. Microwave-hydrothermal processing of metal powders[J]. J Mater Res, 1995, 10(7): 1687-1692.

    20. [20]

      [20] KATSUKI H, KOMARNENI S. Microwave-hydrothermal synthesis of monodispersed nanophase SymbolaA@-Fe2O3[J]. J Am Ceram Soc, 2001, 84(10): 2313-2317.

    21. [21]

      [21] OZKARA-AYDINOGLU S, ATAC O, GUL O F, KINAYYIGIT S, SAL S, BARANAK M, BOZ I. Alpha-olefin selectivity of Fe-Cu-K catalysts in Fischer-Tropsch synthesis: Effects of catalyst composition and process conditions[J]. Chem Eng J, 2012, 181: 581-589.

    22. [22]

      [22] DONG D C, HONG P J, DAI S S. Preparation of uniform α-Fe2O3 particles by microwave-induced hydrolysis of ferric salts[J]. Mater Res Bull, 1995, 30(5): 531-535.

    23. [23]

      [23] 吴东辉, 章忠秀, 施磊, 汪信. pH值对微波水热法制备纳米α-Fe2O3的控制作用[J]. 精细化工, 2003, 20(4): 212-214. (WU Dong-hui, ZHANG Zhong-xiu, SHI Lei, WANG Xin. Effect of pH value on preparation of nanon α-Fe2O3 by microwave hydrothermal method[J]. Fine Chemicals, 2003, 20(4): 212-214.)

    24. [24]

      [24] 徐文旸, 李瑞丰, 曹景慧, 窦涛, 马静红. 硅沸石-2在合成气制低碳烯烃中的催化作用[J]. 燃料化学学报, 1989, 17(2): 104-111. (XU Wen-yang, LI Rui-feng, CAO Jing-hui, DOU Tao, MA Jing-hong. Catalytic property of silicalite-2 for making light olefins from syngas[J]. Journal of Fuel Chemistry and Technology, 1989, 17(2): 104-111.)

    25. [25]

      [25] 马中义, 杨成, 董庆年, 魏伟, 陈建刚, 李文怀, 孙予罕. 不同形态ZrO2负载Co催化剂上CO+H2吸附与反应行为研究[J]. 高等学校化学学报, 2005, 26(5): 902-906. (MA Zhong-yi, YANG Cheng, DONG Qing-nian, WEI Wei, CHEN Jian-gang, LI Wen-huai, SUN Yu-han. Adsorption and reaction behavior over Co catalysts supported by different zirconia polymorphs[J]. Chemical Journal of Chinese Universities, 2005, 26(5): 902-906.)

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    3. [3]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    4. [4]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    5. [5]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    6. [6]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    7. [7]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    10. [10]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    11. [11]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

    12. [12]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    13. [13]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    14. [14]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    15. [15]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    16. [16]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    17. [17]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    18. [18]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    19. [19]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    20. [20]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

Metrics
  • PDF Downloads(0)
  • Abstract views(637)
  • HTML views(70)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return