Citation: Mohammad Mehdi Khodaei, Mostafa Feyzi, Jahangir Shahmoradi, Mohammad Joshaghani. The sol-gel derived Co-Mn/TiO2 catalysts for light olefins production[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(2): 212-218. shu

The sol-gel derived Co-Mn/TiO2 catalysts for light olefins production

  • Received Date: 11 October 2013
    Available Online: 4 January 2014

  • In this research work, two 30%(Co-Mn)/TiO2 catalysts were prepared using sol-gel (catalyst A) and co-precipitation (catalyst B) methods. The activity and selectivity to C2~4 light olefins in Fischer-Tropsch synthesis (FTS) has been studied in a fixed-bed reactor under different operational conditions. These operational conditions were: temperature 220~280 ℃, and total pressure from 0.1~0.6 MPa. The optimum operating conditions were investigated after steady state. As the results shown, the catalyst A was more selective to C2~4 olefins (58.7% in 260 ℃) and catalyst B was more selective to C5+ hydrocarbons. Characterization of both catalysts was carried out by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and N2 adsorption-desorption measurements methods.
  • 加载中
    1. [1]

      [1] CHANENCHUK C A, YATES I C, SATTERFIELD C N. The Fischer-Tropsch synthesis with a mechanical mixture of a cobalt catalyst and a copper-based water gas shift catalyst[J]. Energy Fuels, 1991, 5(6): 847-855.

    2. [2]

      [2] HAGHSHENAS FARD M, MALEKI L, KHOSHNODI M, MIRZAEI A A. Hydrogenation of CO over a cobalt/cerium oxide catalyst for production of lower olefins[J]. Iran J Sci Tech Trans B, 2004, 28(B6): 689-693.

    3. [3]

      [3] Park C, Baker R T K. Carbon deposition on iron–nickel during interaction with ethylene-carbon monoxide-hydrogen mixtures[J]. J Catal, 2000, 190(1): 104-117.

    4. [4]

      [4] KLBEL H, TILLMETZ D K. Chem Abst, 1977, 86(4) (1977) 192342.

    5. [5]

      [5] FEYZI M, MIRZAEI A A. Catalytic behaviors of Co-Mn/TiO2 catalysts for Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2012, 40(12): 1435-1443.

    6. [6]

      [6] TAUSTER S J, FUNG S C, GARDEN R. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide[J]. J Am Chem Soc, 1978, 100(1): 170-175.

    7. [7]

      [7] MA X D, SUN Q W, CAO F H, YING W Y, FANG D Y. Effects of the different supports on the activity and selectivity of iron-cobalt bimetallic catalyst for Fischer-Tropsch synthesis[J]. J Nat Gas Chem, 2006, 15(4): 335-339.

    8. [8]

      [8] COPPERWAITE R G, HUTCHINGS G J, VAN DER RIET M, WOODHOUSE J R. Carbon monoxide hydrogenation using manganese oxide-based catalysts: Effect of operating conditions on alkene selectivity[J]. Int Eng Chem Res, 1987, 26(5): 969-974.

    9. [9]

      [9] COLLEY S, COPPERTHWAITE R G, HUTCHINGS G J, VAN DER RIET M. Carbon monoxide hydrogenation using cobalt manganese oxide catalysts: Initial catalyst optimization studies[J]. Int Eng Chem Res, 1988, 27(8): 1339-1344.

    10. [10]

      [10] VAN DER RIET M, HUTCHINGS G J, COPPERTHWAITE R G. Selective formation of C3 hydrocarbons from CO + H2 using cobalt-manganese oxide catalysts[J]. J Chem Soc Chem Commun, 1986, 98(10): 798-799.

    11. [11]

      [11] DRY M E. The Fischer-Tropsch process: 1950-2000[J]. Catal Today, 2002, 71(3): 227-241.

    12. [12]

      [12] REUEL R C, BARTOLOMEW C H. Effects of support and dispersion on the CO hydrogenation activity/selectivity properties of cobalt[J]. J Catal, 1984, 85(1): 78-88.

    13. [13]

      [13] IGLESIA E, SOLED S L, FIATO R A. Fischer-Tropsch synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity[J]. J Catal, 1992, 137(1): 212-224.

    14. [14]

      [14] MIRZAEI A A, FAIZI M, HABIBPOUR R. Effect of preparation conditions on the catalytic performance of cobalt manganese oxide catalysts for conversion of synthesis gas to light olefins[J]. Appl Catal A: Gen, 2006, 306: 98-107.

    15. [15]

      [15] ZHANG H B, SCHRADER G L. Characterization of a fused iron catalyst for Fischer-Tropsch synthesis by in situ laser Raman spectroscopy[J]. J Catal, 1985, 95(1): 325-332.

    16. [16]

      [16] SHROFF M D, KALAKKAD D S, KOHLER S, JACKSON N B, SAULT A G, DATYE A K. Activation of precipitated iron Fischer-Tropsch synthesis catalysts[J]. J Catal, 1995, 156(2): 185-207.

    17. [17]

      [17] O'BRIEN R J, XU L, MILBURN D R, LI Y X, KLABUNDE K J, DAVIS B H. Fischer-Tropsch synthesis: Impact of potassium and zirconium promoters on the activity and structure of an ultrafine iron oxide catalyst[J]. Top Catal, 1995, 2(1/4): 1-15.

    18. [18]

      [18] AMELSE J A, BUTT J B, SCHWARTZ L H. Carburization of supported iron synthesis catalysts[J]. J Phys Chem, 1978, 82(5): 558-563.

    19. [19]

      [19] MAULDIN C H, VARNADO D E. Rhenium as a prometer of titania-supported cobalt Fischer-Tropsch catalysts[J]. Stud Surf Sci Catal, 2004, 136: 417-422.

    20. [20]

      [20] BARRAULT J, FORQUY C, PERRICHON V. Effects of manganese oxide and sulphate on olefin selectivity of iron supported catalysts in the Fischer-Tropsch reaction[J]. Appl Catal A: Gen, 1993, 5(1): 119-125.

    21. [21]

      [21] KRISHNA K R, BELL A T. Estimates of the rate coefficients for chain initiation, propagation, and termination during Fischer-Tropsch synthesis over Ru/TiO2[J]. J Catal, 1993, 139(1): 104-118.

    22. [22]

      [22] GRIBOVAL-CONSTANT A, KHODAKOV A Y, BECHARA R, ZHOLOBENKO V L. Support mesoporosity: A tool for better control of catalytic behavior of cobalt supported Fischer-Tropsch catalysts[J]. Stud Surf Sci Catal, 2002, 144: 609-616.

    23. [23]

      [23] FEYZI M, KHODAEI M M, SHAHMORADI J. Effect of preparation and operation conditions on the catalytic performance of cobalt-based catalysts for light olefins production[J]. J Fuel Process Technol, 2012, 93(1): 90-98.

    24. [24]

      [24] KUIPERS E W, SCHEPER C, WILSON J H, VINKENBURG I H, OOSTERBEEK H. Non-ASF product distributions due to secondary reactions during Fischer-Tropsch synthesis[J]. J Catal, 1996, 158(1): 288-300.

    25. [25]

      [25] MORALES F, GRANDJEAN D, MENS A, DE GROOT F M F, WECKHUYSEN B M. X-ray absorption spectroscopy of Mn/Co/TiO2 Fischer-Tropsch catalysts: Relationships between preparation method, molecular structure, and catalyst performance[J]. J Phys Chem, 2006, 110(17): 8626-8639.

  • 加载中
    1. [1]

      Teng-Yu HuangJunliang SunDe-Xian WangQi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758

    2. [2]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    5. [5]

      Liping GUO . Synthesis and crystal structure characterization of yttrium imido complex: The reactivity of 2-substituted-1-amino-o-carborane with yttrium dialkyl complex. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1409-1415. doi: 10.11862/CJIC.20250065

    6. [6]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenQiang SunShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoLi Wang . Recent progress on surface chemistry Ⅱ: Property and characterization. Chinese Chemical Letters, 2025, 36(1): 110100-. doi: 10.1016/j.cclet.2024.110100

    7. [7]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    8. [8]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    9. [9]

      Ming-Zhen LiYang ZhangKun LiYa-Nan ShangYi-Zhen ZhangYu-Jiao KanZhi-Yang JiaoYu-Yuan HanXiao-Qiang CaoIn situ regeneration of catalyst for Fenton-like degradation by photogenerated electron transportation: Characterization, performance and mechanism comparison. Chinese Chemical Letters, 2025, 36(1): 109885-. doi: 10.1016/j.cclet.2024.109885

    10. [10]

      Chun-Yun Ding Ru-Yuan Zhang Yu-Wu Zhong Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2024.100393

    11. [11]

      Zhaoyu JinRenjun GuanXin LiDunyi YuanPanpan Li . Advanced characterization techniques for understanding electrocatalytic behavior of oxidized nitrogen waste upcycling processes. Chinese Chemical Letters, 2025, 36(7): 110506-. doi: 10.1016/j.cclet.2024.110506

    12. [12]

      Wanting CHENChufei MIAOYan LIUBobi ZHENGXiaoyu ZHENGHan XUJumei TIAN . Syntheses, characterization, and luminescence properties of Yb(Ⅲ)-based one-dimensional chain coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1672-1680. doi: 10.11862/CJIC.20250013

    13. [13]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    14. [14]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    15. [15]

      Junhua LiTianci ShenYahui ZhuangYu FuYian Shi . Pd-Catalyzed highly regioselective migratory hydroesterification of internal olefins with formates. Chinese Chemical Letters, 2025, 36(7): 110599-. doi: 10.1016/j.cclet.2024.110599

    16. [16]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    17. [17]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    18. [18]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    19. [19]

      Di AnMingdong SheZiyang ZhangTing ZhangMiaomiao XuJinjun ShaoQian ShenXuna Tang . Light-responsive nanomaterials for biofilm removal in root canal treatment. Chinese Chemical Letters, 2025, 36(2): 109841-. doi: 10.1016/j.cclet.2024.109841

    20. [20]

      Mingqi WangShixin FaJiate YuGuoxian ZhangYi YanQing LiuQiuyu Zhang . Light-controlled protein imprinted nanospheres with variable recognition specificity. Chinese Chemical Letters, 2025, 36(2): 110124-. doi: 10.1016/j.cclet.2024.110124

Metrics
  • PDF Downloads(0)
  • Abstract views(354)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return