Citation:
LI Shao-hua, ZHANG Xue-bin, CHE De-yong. TG-FTIR experimental study on co-gasification of pine sawdust and lignite[J]. Journal of Fuel Chemistry and Technology,
;2014, 42(2): 181-186.
-
The TG-FTIR anaylsis technology was applied to analyze the co-gasification process and gasification products of pine sawdust, lignite and their mixtures. The influence of mixing ratio, heating rate and reaction atmosphere on the co-gasification process was also studied. The results show that the pine sawdust can improve the reactivity of samples. As the mixing ratio of pine sawdust is increasing, the mass loss rate of gasification decreases, and the beginning temperature and the peak area of CO formation have a decreasing tendency. It is found that the lower heating rate is advantageous to the formation of CO and CH4. With increasing the heating rate, the DTG curves move to higher temperature ranges, the maximum weight loss rate increases, and the pine sawdust peak disappears. The effect of CO2 atmosphere on the weight loss of devolatilization is not significant. The two peaks of devolatilization are corresponding to the volatile combustion and fixed carbon combustion in air, and the coke gasification is not significant in the atmosphere of air.
-
Keywords:
- pine sawdust,
- lignite,
- co-gasification,
- TG-FTIR,
- gasification products
-
-
-
[1]
[1] 步学朋, 王鹏, 忻仕河. 煤炭气化多联产生产代用天然气分析[J]. 煤化工, 2007, 11(6): 4-7. (BU Xue-peng, WANG Peng, XIN Shi-he. Analysis of coal gasification/poly-generation to produce Substitute Natural Gas (SNG)[J]. Coal Chemical Industry, 2007, 11(6): 4-7.)
-
[2]
[2] 姜英, 涂华. 我国商品褐煤低位发热量回归式的推导[J]. 煤炭学报, 2004, 29(4): 477-480. (JIANG Ying, TU Hua. Equations of calculating calorific value of lignite in China[J].Journal of China Coal Society, 2004, 29(4): 477-480.)
-
[3]
[3] 程世庆, 尚琳琳. 生物质的热解过程及其动力学规律[J]. 煤炭学报, 2006, 31(4): 501-505. (CHENG Shi-qing, SHANG Lin-lin.The pyrolysis characteristics of biomass and its dynam ics law[J]. Journal of China Coal Society, 2006, 31(4): 501-505.)
-
[4]
[4] 闵凡飞, 张明旭. 新鲜生物质催化热解气化制富氢燃料气的试验研究[J]. 煤炭学报, 2006, 31(5): 649-653. (MIN Fan-fei, ZHANG Ming-xu. Trial study on catalytic pyrolysis gasification of fresh biomass to produce hydrogen rich gas[J]. Journal of China Coal Society, 2006, 31(5): 649-653.)
-
[5]
[5] FASINA O, LITTLEFIELD B. TG-FTIR analysis of pecan shells thermal decomposition[J]. Fuel Process Technol, 2012, 102: 61-66.
-
[6]
[6] BASSILAKIS R, CARANGELO R M. TG-FTIR analysis of biomass pyrolysis[J]. Fuel, 2001, 80(12): 1765-1786.
-
[7]
[7] WÓJTOWICZ M A, BASSILAKIS R. Modeling the evolution of volatile species during tobacco pyrolysis[J]. J Anal Appl Pyrolysis, 2003, 66(1/2): 235-261.
-
[8]
[8] 阎维平, 陈吟颖. 生物质混合物与煤共热解的协同特性[J]. 中国电机工程学报, 2007, 27(2): 80-86. (YAN Wei-ping, CHEN Yin-ying. Interaction performance of Co-pyrolysis of biomass mixture and coal of different rank[J]. Proceedings of the CSEE, 2007, 27(2): 80-86.)
-
[9]
[9] LIU X G, LI B Q. Theoretical elucidation of distributed activation energy model and ITS applications in char gasification[J]. Journal of Fuel Chemistry and Technology, 2001, 29(1): 54-59.)
-
[10]
[10] ARENILLAS A, RUBIERA F. Influence of char structure on reactivity and nitric oxide emissions[J]. Fuel Process Technol, 2002, 77: 103-109.
-
[11]
[11] CETIN E, MOGHTADERIB B, GUPTA R. Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars[J]. Fuel, 2004, 83(16): 2139-2150.
-
[12]
[12] VLADIMIR VAND. A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum[J]. Proc Phys Soc, 1943, 55(3): 222-246.
-
[13]
[13] 向银花, 王洋. 煤气化动力学模型研究[J]. 燃料化学学报, 2002, 30(1): 21-26. (XIANG Yin-hua, WANG Yang. A study on kinetic models of char gasification[J]. Journal of Fuel Chemistry and Technology, 2002, 30(1): 21-26.)
-
[14]
[14] 贾相如, 金保升. 污水污泥热解和燃烧特性的实验研究[J]. 锅炉技术, 2005, 36(6): 39-42. (JIA Xiang-ru, JIN Bao-sheng. An analysis of the reason for the break of the fire-resistant material on circulating fluidize bed boiler[J]. Boiler Technology, 2005, 36(6): 39-42.)
-
[15]
[15] WANG Q, ZHAO W, LIU H. Interactions and kinetic analysis of oil shale semi-coke with cornstalk during Co-combustion[J]. Appl Energy, 2011, 88(6): 2080-2087.
-
[16]
[16] BIAGINI E, LIPPI F, PETARCA L. Devolatilization rate of biomasses and coal-biomass blends: An experimental investigation[J]. Fuel, 2002, 81(8): 1041-1050.
-
[1]
-
-
-
[1]
Shipeng WANG , Shangyu XIE , Luxian LIANG , Xuehong WANG , Jie WEI , Deqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094
-
[2]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[3]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[4]
Yadan Luo , Hao Zheng , Xin Li , Fengmin Li , Hua Tang , Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052
-
[5]
Xuexia He , Zhibin Lei , Pei Chen , Qi Li , Weiyu Deng , Peng Hu . 以“溶度积规则”指导电荷转移共晶沉淀析出——材料类专业无机化学教学改革案例. University Chemistry, 2025, 40(8): 1-10. doi: 10.12461/PKU.DXHX202410099
-
[6]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012
-
[7]
Haoyu Sun , Dun Li , Yuanyuan Min , Yingying Wang , Yanyun Ma , Yiqun Zheng , Hongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007
-
[8]
Xudong Lv , Tao Shao , Junyan Liu , Meng Ye , Shengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028
-
[9]
Dongdong Yao , JunweiGu , Yi Yan , Junliang Zhang , Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125
-
[10]
Lijuan Wang , Yuping Ning , Jian Li , Sha Luo , Xiongfei Luo , Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017
-
[11]
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067
-
[12]
Dong Xiang , Kunzhen Li , Kanghua Miao , Ran Long , Yujie Xiong , Xiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(345)
- HTML views(10)