Citation: ZHANG Shu, CHEN Zong-ding, CHEN Xu-jun, GONG Xu-zhong. Effects of ash/K2CO3/Fe2O3 on ignition temperature and combustion rate of demineralized anthracite[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(2): 166-174. shu

Effects of ash/K2CO3/Fe2O3 on ignition temperature and combustion rate of demineralized anthracite

  • Corresponding author: ZHANG Shu,  GONG Xu-zhong, 
  • Received Date: 9 October 2013
    Available Online: 13 December 2013

    Fund Project: National Nature Science Foundation of China (51004090) (51004090)

  • The effects of ash/K2CO3/Fe2O3 and their interactions on the ignition temperature and combustion rate of acid-washed anthracite were examined. The coal ashes from combustion of anthracite at different temperatures showed very different properties such as chemical compositions, color and morphology. Reactivities of demineralized anthracite with and without catalysts were measured by thermo-gravimetric analyzer (TG-DTG). The results indicate that ash itself has no catalytic effects on ignition temperature while the combustion rate is improved, especially by the ash prepared at high temperatures. The use of ash with K2CO3 (or Fe2O3) together as combustion catalysts reveals that the interactions (i.e. sintering reactions) between them have caused the reduction in combustion rate, compared with the cases when K2CO3 or Fe2O3 was employed individually. Similarly, the synergistic effect between K2CO3 and Fe2O3 was also observed to lower the combustion rate of demineralized anthracite.
  • 加载中
    1. [1]

      [1] SAMIT M, SUNIL K S. Minerals transformations in Northeastern region coals of India on heat treatment[J]. Energy Fuels, 2006, 20(3): 1089-1096.

    2. [2]

      [2] VAN-DYK J C, WAANDERS F B, BENSON S A, LAUMB M L, HACK K. Viscosity predictions of the slag composition of gasified coal, utilizing FactSage equilibrium modelling[J]. Fuel, 2009, 88(1): 67-74.

    3. [3]

      [3] MCLENNAN A R, BRYANT G W, STANMORE B R, WALL T F. Ash formation mechanisms during pf combustion in reducing conditions[J]. Energy Fuels, 2000, 14(1): 150-159.

    4. [4]

      [4] LIU Y H, CHE D F, XU T M. The effects of indigenous minerals in a coal on the emissions of NO and SO2 during combustion[J]. Combust Flame, 2004, 138(4): 404-406.

    5. [5]

      [5] ÖZTAS N A, YÜRÜM Y. Pyrolysis of Turkish Zonguldak bituminous coal. Part 1. Effect of mineral matter[J]. Fuel, 2000, 79(10): 1211-1227.

    6. [6]

      [6] RALF K, HENRYK Z. Catalytic effects of ash components in low rank coal gasification. 1. Gasification with carbon dioxide[J]. Fuel, 1991, 69(3): 275-281.

    7. [7]

      [7] MÉNDEZ L B, BORREGO A G, MARTINEZ-TARAZONA M R, MENÉNDEZ R. Influence of petrographic and mineral matter composition of coal particles on their combustion reactivity[J]. Fuel, 2003, 82(15): 1875-1882.

    8. [8]

      [8] RUBIERA F, ARENILLAS A, PEVIDA C, GARCÍIA R, PIS J J, STEEL K M, PATRICK J W. Coal structure and reactivity changes induced by chemical demineralization[J]. Fuel Process Technol, 2002, 79(3): 273-279.

    9. [9]

      [9] SUJANTI W, ZHANG D K. A laboratory study of spontaneous combustion of coal: The influence of inorganic matter and reactor size[J]. Fuel, 1999, 78(5): 549-556.

    10. [10]

      [10] CRELLING J C, HIPPO E J, WOERNER B A, WEST J D P. Combustion characteristics of selected whole coals and macerals[J]. Fuel, 1992, 71(2): 151-158.

    11. [11]

      [11] LEMAIGNEN L, ZHOU Y, REED G P, DUGWELL D R, DANDIYOUTI R. Factors governing reactivity in low temperature coal gasification. Part II. An attempt to correlate conversions with inorganic and mineral constituents[J]. Fuel, 2002, 81(3): 315-326.

    12. [12]

      [12] BAI J, LI W, LI B Q. Characterization of low-temperature coal ash behaviors at high temperatures under reducing atmosphere[J]. Fuel, 2008, 87(4): 583-591.

    13. [13]

      [13] HEDDEN K, WILHELM A. Catalytic effects of inorganic substances on reactivity and ignition temperature of solid fuels[J]. Ger Chem Eng, 1980, 3(2): 142-147.

    14. [14]

      [14] WU Z H, XU L, WANG Z Z, ZHANG Z R. Catalytic effects on the ignition temperature of coal[J]. Fuel, 1998, 77(8): 891-893.

    15. [15]

      [15] LIU Y H, CHE D F, XU T M. Effects of NaCl on the capture of SO2 by CaCO3 during coal combustion[J]. Fuel, 2006, 85(4): 524-531.

    16. [16]

      [16] ZHAO Z B, LI W, QIU J S, WANG X Z, LI B Q. Influence of Na and Ca on the emission of NOx during coal combustion[J]. Fuel, 2006, 85(5): 601-606.

    17. [17]

      [17] MCKEE D W. Mechanisms of the alkali metal catalyzed gasification of carbon[J]. Fuel, 1983, 62(2): 170-175.

    18. [18]

      [18] BAI J, LI W, LI C Z, BAI Z Q, LI B Q. Infulences of minerals transformation on the reactivity of high temperature char gasification[J]. Fuel Process Technol, 2010, 91(4): 404-409.

    19. [19]

      [19] VAN-DYK J C, BENSON S A, LAUMB M L, WAANDERS B. Coal and coal ash characteristics to understand mineral transformations and slag formation[J]. Fuel, 2009, 88(6): 1057-1063.

    20. [20]

      [20] VARGAS S, FRANDSEN F J, DAM-JOHANSEN K. Rheological properties of high-temperature melts of coal ashes and other silicates[J]. Prog Energy Combust Sci, 2001, 27(3): 237-429.

    21. [21]

      [21] GONG X Z, GUO Z C, WANG Z. Reactivity of pulverized coals during combustion catalyzed by CeO2 and Fe2O3[J]. Combust Flame, 2010, 157(2): 351-356.

    22. [22]

      [22] GURURAJAN V S, WALL T F, GUPTA R P, TRUELOVE J S. Mechanisms for the ignition of pulverized coal particles[J]. Combust Flame, 1990, 81(12): 119-132.

    23. [23]

      [23] LOTHAR K, HORST P. Reaction of catalysts with matter during coal gasification[J]. Fuel, 1983, 62(2): 205-208.

    24. [24]

      [24] FORMELLA K, LEONHARDT P, SULIMMA A, VANHEEK K H, JÜNTGEN H. Interaction of mineral matter in coal with potassium during gasification[J]. Fuel, 1986, 65(10): 1470-1472.

    25. [25]

      [25] PRANDA P, PRANDOÁ K, HLAVACEK V. Combustion of fly-ash carbon Part I. TG-DTA study of ignition temperature[J]. Fuel Process Technol, 1999, 61(3): 211-221.

    26. [26]

      [26] AN H M, MCGINN P J. Catalytic behavior of potassium containing compounds for soot combustion[J]. Appl Catal B: Environ, 2006, 62(1): 46-56.

    27. [27]

      [27] JIMÉNEZ R, GARCÍA X I, CELLIER C, RUIZ P, GORDON A L. Soot combustion with K/MgO as catalyst[J]. Appl Catal A: Gen, 2006, 297(2): 125-134.

    28. [28]

      [28] HAO Z Z, WU S L, WANG Y C, LUO G P, WU H L, DUAN X G. Acting mechanism of F, K, and Na in the solid phase sintering reaction of the Baiyunebo iron ore[J]. Int J Miner Metal Mater, 2010, 17(2): 137-142.

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    4. [4]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    5. [5]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    8. [8]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    9. [9]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    12. [12]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    16. [16]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    17. [17]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    18. [18]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    19. [19]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    20. [20]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

Metrics
  • PDF Downloads(0)
  • Abstract views(434)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return