Citation:
GUO Feng, YU Jian, MU Yang, CHU Mo, XU Guang-wen. Preparation of catalyst with wide working-temperature and the reaction mechanism of flue gas denitration[J]. Journal of Fuel Chemistry and Technology,
;2014, 42(1): 101-109.
-
The V2O5-WO3/TiO2 catalyst using the mesoporous support of TiO2 made by sol-gel method was prepared with two-step impregnation method and tested for the selective catalytic reduction (SCR) of NO by NH3. The characterization of the catalyst with BET, NH3-TPD, H2-TPR, SEM, activity evaluation and in-situ FT-IR was made to have a deep understanding of the structure, acidity, redox property, catalytic performance, de-NOx activity and the reaction mechanism. The mesoporous TiO2 has a surface area of 158.6 m2/g, and the prepared de-NOx catalyst has a slightly decreased surface area of 136.7 m2/g. The V2O5-WO3/TiO2 catalyst enables the NO conversions to reach to about 80% at 250~400 ℃ and φNH3/φNO = 0.8, showing the feature of wide working-temperature for the catalyst. The surface adsorption of reactants characterized by in-situ FT-IR shows that NH3 is adsorbed on both the Lewis and Brnsted acidic sites to generate a few different transformation species. The transformation from NH3 to NH2 is the rate-determining step for de-NOx reaction in NH3-SCR. It is found that the NH3-SCR reaction occurs between the adsorbed NH3 and gaseous NO, which follows the Eley-Rideal reaction mechanism.
-
-
-
[1]
[1] 冯杰, 李文英, 谢克昌, 刘美蓉. 煤及煤焦气化过程中NOx前驱体释放规律研究[J]. 燃料化学学报, 2003, 31(1): 35-38. (FENG Jie, LI Wen-ying, XIE Ke-chang, LIU Mei-rong. Study on the release of NO precursors during coal and its char gasification[J]. Journal of Fuel Chemistry and Technology, 2003, 31(1): 35-38.)
-
[2]
[2] 周昊, 邱坤赞, 王智化, 翁安心, 岑可法, 樊建人. 煤种及煤粉细度对炉内再燃过程脱硝和燃尽特性的影响[J]. 燃料化学学报, 2004, 32(2): 146-150. (ZHOU Hao, QIU Kun-zan, WANG Zhi-hua, WENG An-xin, CEN Ke-fa, FAN Jian-ren. Study of coal rank and fineness on NOx reduction with coal reburning technology[J]. Journal of Fuel Chemistry and Technology, 2004, 32(2): 146-150.)
-
[3]
[3] ALEMANY L J, LIETTI L, FERLAZZO N, FORZATTI P, BUSCA G, GIAMELLO E, BREGANI F. Reactivity and physic chemical characterization of V2O5-WO3/TiO2 De-NOx catalysts[J]. J Catal, 1995, 155(1): 117-130.
-
[4]
[4] DEO G, WACHS I E. Reactivity of supported vanadium oxide catalysts: The partial oxidation of methanol[J]. J Catal, 1994, 146(2): 323-334.
-
[5]
[5] DEO G, WACHS I E. Effect of additives on the structure and reactivity of the surface vanadium oxide phase in V2O5/TiO2 catalysts[J]. J Catal, 1994, 146(2): 335-345.
-
[6]
[6] 秦玉楠. 具有高活性及扩孔结构载体的Mo-Co/r-AI2O3催化剂的制备方法及其性能优化[J]. 中国钼业, 2004, 28(1): 26-29. (QIN Yu-nan. Preparation and fine performance of Mo-Co/r-Al2O3 catalyst with the carrier of high activity and reaming structure[J]. China Molybdenum Industry, 2004, 28(1): 26-29.)
-
[7]
[7] 李振华, 刘中清, 燕青芝, 王宜超, 葛昌纯. 合成温度对二氧化钛纳米管的影响[J]. 功能材料, 2007, 38(3): 485-487. (LI Zhen-hua, LIU Zhong-qing, YAN Qing-zhi, WANG Yi-chao, GE Chang-chun. The influence of synthesis temperature on the titania nanotube[J]. Journal of Functional Materials, 2007, 38(3): 485-487.)
-
[8]
[8] OH S W, PARK S H, SUN Y K. Hydrothermal synthesis of nano-sized anatase TiO2 powders for lithium secondary anode materials[J]. J Power Sources, 2006, 161(2): 1314-1318.
-
[9]
[9] 兰章, 吴季怀, 林建明, 黄妙良. 水热法可控合成二氧化钛纳米晶及其在染料敏化太阳能电池中的应用[J]. 中国科学: 化学, 2012, 42(7): 1029-1034. (LAN Zhang, WU Ji-huai, LIN Jian-ming, HUANG Miao-liang. Controllable hydrothermal synthesis of nanocrystal TiO2 particles used in dye sensitized solar cells[J]. Scientia Sinca Chimica, 2012, 42(7): 1029-1034.)
-
[10]
[10] 王卫伟, 张志焜. 铁离子对二氧化钛晶型转变的影响[J]. 功能材料, 2003, 34(4): 429-430. (WANG Wei-wei, ZHANG Zhi-kun. The influence of Fe3+ on crystalline phase transition of TiO2[J]. Journal of Functional, 2003, 34(4): 429-430.)
-
[11]
[11] 丁珂, 田进军, 王晟, 叶庆国. 液相沉淀法制备纳米TiO2及其光催化性能的研究[J]. 工业催化, 2004, 10(12): 30-33. (DING Ke, TIAN Jin-jun, WANG Sheng, YE Qing-guo. Preparation of titania by liquid-phase precipitation and its photocatalytic properties[J]. Industrial Catalysis, 2004, 10(12): 30-33.)
-
[12]
[12] 姚杰, 仲兆平, 赵金笑. 不同方式合成纳米TiO2载体在SCR脱硝催化剂制备中的应用[J]. 东南大学学报(自然科学版), 2012, 42(4): 685-690. (YAO Jie, ZHONG Zhao-ping, ZHAO Jin-xiao. Nano-TiO2 preparaed from different ways and application in SCR DeNOx catalyst[J]. Journal of Southeast University (Natural Science Edition), 2012, 42(4): 685-690.)
-
[13]
[13] 薛寒松, 李华基, 易于, 胡慧芳, 孟翠. 铈掺杂二氧化钛纳米管的光催化性能[J]. 机械工程材料, 2008, 32(6): 36-39. (XUE Han-song, LI Hua-ji, YI Yu, HU Hui-fang, MENG Cui. Photocatalytic property of cerium-doped titanium dioxide nanotubes[J]. Materials for Mechanical Engineering, 2008, 32(6): 36-39.)
-
[14]
[14] 梁春华, 吴峰. 钐离子掺杂二氧化钛光催化降解甲基橙研究[J]. 环境保护科学, 2008, 34(2): 45-47. (LIANG Chun-hua, WU Feng. Study on methyl orange photocatalysis by samarium doping with titanium dioxide[J]. Environmental Protection Science, 2008, 34(2): 45-47.)
-
[15]
[15] 孙克勤, 钟秦, 李明波, 李云涛, 黄丽娜. V2O5-WO3/TiO2 脱硝催化剂的制备及其性能研究[J]. 环境科学研究, 2007, 20(3): 124-127. (SUN Ke-qin, ZHONG Qin, LI Ming-bo, LI Yun-tao, HUANG Li-na. Study on the preparation and property of SCR catalyst V2O5-WO3/TiO2[J]. Research of Environmental Sciences, 2007, 20(3): 124-127.)
-
[16]
[16] 沈伯雄, 马娟. SiO2改性的V2O5-MoO3/TiO2催化剂抗碱中毒性能研究[J]. 燃料化学学报, 2012, 40(2): 247-251. (SHEN Bo-xiong, MA Juan. Alkali-resistant performance of V2O5-MoO3/TiO2 catalyst modified by SiO2[J]. Journal of Fuel Chemistry and Technology, 2012, 40(2): 247-251.)
-
[17]
[17] ARFAOUI J, BOUDALI L K, GHORBEL A, DELAHAY G. Effect of vanadium on the behaviour of unsulfated and sulfated Ti-pillared clay catalysts in the SCR of NO by NH3[J]. Catal Today, 2009, 142(3/4): 234-238.
-
[18]
[18] CHMIELARZ L, KUTROWSKI P, ZBROJA M, ASOCHA W, DZIEMBAJ R. Selective reduction of NO with NH3 over pillared clays modified with transition metals[J]. Catal Today, 2004, 90(1/2): 43-49.
-
[19]
[19] ALEMANY L J, LIETTI L, FERLAZZO N, FORZATTI P, BUSCA G, GIAMELLO E, BREGANI F. Reactivity and physicochemical characterization of V2O5-WO3/TiO2 De-NOx Catalysts[J]. J Catal, 1995, 155(1): 117-130.
-
[20]
[20] LIETTI L, ALEMANY J L, FORZATTI P, BUSCA G, RAMIS G, GIAMELLO E, BREGANI F. Reactivity of V2O5-WO3/TiO2 catalysts in the selective catalytic reduction of nitric oxide by ammonia[J]. Catal Today, 1996, 29(1/4): 143-148.
-
[21]
[21] 孙闻东, 赵振波, 楚文玲, 郭川, 叶兴凯, 吴越. WO3/ZrO2固体强酸催化剂上异丁烷-丁烯烷基化反应研究(I)-钨负载量和焙烧温度的影响[J]. 高等学校化学学报, 2000, 21(3): 448-452. (SUN Wen-dong, ZHAO Zhen-bo, CHU Wen-ling, GUO Chuan, YE Xing-kai, WU Yue. Studies on the alkylation of isobutane with butene over WO3/ZrO2 strong solid acid(Ⅰ)-effect of preparation, load of WO3 and calcination temperature[J]. Chemical Journal of Chinese Universities, 2000, 21(3): 448-452.)
-
[22]
[22] VERMAIRE D C, BERGE P C. The preparation of WO3/TiO2 and WO3/Al2O3 and characterization by temperature-programmed reduction[J]. J Catal, 1989, 116(2): 309-317.
-
[23]
[23] GIAKOUMELOU I, FOUNTZOULA C, KORDULIS C, BOGHOSIAN S. Molecular structure and catalytic activity of V2O5/TiO2 catalysts for the SCR of NO by NH3 in situ Raman spectra in the presence of O2, NH3, NO, H2, H2O, and SO2[J]. J Catal, 2006, 239(1): 1-12.
-
[24]
[24] RAO K N, REDDY B M, ABHISHEK B, SEO Y H, JIANG N, PARK S. Effect of ceria on the structure and catalytic activity of V2O5/TiO2-ZrO2 for oxide hydrogenation of ethylbenzene to styrene utilizing CO2 as soft oxidant[J]. Appl catal B: Environ, 2009, 91(3/4): 649-656.
-
[25]
[25] CHEN L, LI J H, GE M F. DRIFT study on cerium-tungsten/titania catalyst for selective catalytic reduction of NOx with NH3[J]. Environ Sci Technol, 2010, 44(24): 9590-9596.
-
[26]
[26] KIJLSTRA W S, BRANDS D S, POELS E K, BLIEK A. Mechanism of the selective catalytic reduction of NO by NH3 over MnOx/Al2O3[J]. J Catal, 1997, 171(1): 208-218.
-
[27]
[27] JUNG S M, GRANGE P. Investigation of the promotional effect of V2O5 on the SCR reaction and its mechanism on hybrid catalyst with V2O5 and TiO2-SO42- catalysts[J]. Appl Catal B: Environ, 2002, 36(3): 207-215.
-
[28]
[28] CENTENO M A, CARRIZOSA I, ODRIOZOLA J A. In situ DRIFTS study of the SCR reaction of NO with NH3 in the presence of O2 over lanthanide doped V2O5/Al2O3 catalysts[J]. Appl Catal B: Environ, 1998, 19(1): 67-73.
-
[29]
[29] RAMIS G, YI L, BUSCA G. TURCO M, KOTUR E, WILLEY R J. Adsorption, activation and oxidation of ammonia over SCR catalysts[J]. J Catal, 1995, 157(2): 523-535.
-
[30]
[30] CHI Y, CHUANG S S C. Infrared study of NO adsorption and reduction with C3H6 in the presence of O2 over CuO/Al2O3[J]. J Catal, 2000, 190(1): 75-91.
-
[31]
[31] SUáREZ S, JUNG S M, AVILA P, GRANGE P, BLANCO J. Influence of NH3 and NO oxidation on the SCR reaction mechanism on copper/nickel and vanadium oxide catalysts supported on alumina and titania[J]. Catal Today, 2002, 75(1/4): 331-338.
-
[32]
[32] LI L, SHEN Q, CHENG J, HAO Z. Catalytic oxidation of NO over TiO2 supported platinum clusters. II: Mechanism study by in situ FTIR spectra[J]. Catal Today, 2010, 158(3/4): 361-369.
-
[33]
[33] CENTI G, PERATHONER S. Nature of active species in copper-based catalysts and their chemistry of transformation of nitrogen oxides[J]. Appl Catal A: Gen, 1995, 132(2): 179-259.
-
[34]
[34] PÂRVULESCU V I, GRANGE P, DELMON B. Catalytic removal of NO[J]. Catal Today, 1998, 46(4): 233-316.
-
[35]
[35] 范红梅, 仲兆平, 金保升, 李锋, 刘涛, 翟俊霞. V2O5-WO3/TiO2催化剂氨法SCR脱硝反应动力学研究[J]. 燃料化学学报, 2006, 34(3): 377-380. (FAN Hong-mei, ZHONG Zhao-Ping, JIN Bao-sheng, LI Feng, LIU Tao, ZHAI Jun-xia. Kinetics study of the selective catalytic reduction of NO with NH3 over V2O5-WO3/TiO2 catalyst[J]. Joumal of Fuel Chemistry and Technology, 2006, 34(3): 377-380.)
-
[1]
-
-
-
[1]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[2]
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
-
[3]
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
-
[4]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[5]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[6]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[7]
Guowen Xing , Guangjian Liu , Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058
-
[8]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[9]
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
-
[10]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[11]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[12]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
-
[13]
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
-
[14]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[15]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[16]
Yang Wang , Yunpeng Fu , Xiaoji Liu , Guotao Zhang , Guobin Li , Wanqiang Liu , Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113
-
[17]
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
-
[18]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[19]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[20]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(859)
- HTML views(73)