Citation: LI Zhi-yang, YUAN Shan-mei, ZHU Yu, NI Hong-jun. Preparation and electrocatalytic performance of PtPb anode catalyst supported on carbon fiber[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(1): 96-100. shu

Preparation and electrocatalytic performance of PtPb anode catalyst supported on carbon fiber

  • Corresponding author: NI Hong-jun, 
  • Received Date: 27 May 2013
    Available Online: 11 August 2013

    Fund Project: 国家科技支撑计划(2011BAG02B10) (2011BAG02B10)江苏高校优势学科建设工程资助项目、江苏高校科研成果产业化推进项目(JHB2012-45) (JHB2012-45)南通市应用研究计划(BK2011029) (BK2011029)南通大学自然科学项目(11ZY007)。 (11ZY007)

  • Nano PtPb anode catalyst supported on carbon fiber was prepared by the technology of electro-spinning combined with sintering; the catalyst was characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and scanning electron microscopy (SEM). The results showed that the nano catalyst is well dispersed on the skeleton of vesicular carbon fiber with a particle size of 3.05 nm; the catalytic efficiency is significantly improved by pre-oxidation at 300 ℃and carbonization at 800 ℃. The catalyst activity in ethanol oxidation was evaluated through cyclic voltammogram (CV) and electrochemical impedance spectroscopy (EIS). The results indicated that the catalyst has better resistance against poisoning; over it, the maximum current density is 125 mA/cm2 and the charge transfer resistance is reduced by 60% in comparison with that over the catalyst carbonized at 700 ℃.
  • 加载中
    1. [1]

      [1] DATTA J, DUTTA A, BISWAS M. Enhancement of functional properties of PtPd nano catalyst in metal-polymer composite matrix: Application in direct ethanol fuel cell[J]. Electrochem Commun, 2012, 20: 56-59.

    2. [2]

      [2] ZHOU W J, ZHOU B, LI W Z, ZHOU Z H, SONG S Q, SUN G Q, XIN Q, DOUVARTZIDES S, GOULA M, TSIAKARAS P. Performance comparison of low-temperature direct alcohol fuel cells with different anode catalysts[J]. J Power Sources, 2004, 126(1/2): 16-22.

    3. [3]

      [3] LIU J P, YE J Q, XU C W, JIANG S P, TONG Y X. Electro-oxidation of methanol, 1-propanol and 2-propanol on Pt and Pd in alkaline medium[J]. J Power Sources, 2008, 177(1): 67-70.

    4. [4]

      [4] XU C W, TIAN Z Q, CHEN Z C, JIANG S P. Pd/C promoted by Au for 2-propanol electrooxidation in alkaline media[J]. Electrochem Commun, 2008, 10(2): 246-249.

    5. [5]

      [5] 王旭红, 袁善美, 朱昱, 倪红军. 碳纤维基PtSn催化剂直接乙醇燃料电池制备及性能研究[J]. 燃料化学学报, 2012, 40(12): 1454-1458. (WANG Xu-hong, YUAN Shan-mei, ZHU Yu, NI Hong-jun. Preparation and performance research of PtSn catalyst supported on carbon fiber for direct ethanol fuel cells[J]. Journal of Fuel Chemistry and Technology, 2012, 40(12): 1454-1458.)

    6. [6]

      [6] SPINACE, FARIAS L A, LINARDI M, NETO A O. Preparation of PtSn/C and PtSnNi/C electrocatalysts using the alcohol-reduction process[J]. Mater Lett, 2008, 62(14): 2099-2102.

    7. [7]

      [7] GOJKOVIC S L, TRIPKOVIC A V, STEVANOVIC R M. Mixtures of methanol and 2-propanol as a potential fuel for direct alcohol fuel cells[J]. J Serb Chem Soc, 2007, 72(12): 1419-1425.

    8. [8]

      [8] JANG M K, HAN I J, SEONG M J. Preparation and characterization of Pt nanowire by electrospinning method for methanol oxidation[J]. Electrochim Acta, 2010, 55(16): 4827-4835.

    9. [9]

      [9] JIANG L H, SUN G Q, ZHOU Z H. Size controllable synthesis of monodispersed SnO nanoparticle sand applicationin electrocatalysts[J]. J Phys Chem B, 2005, 109: 8774-8778.

    10. [10]

      [10] JARUUK T, SUPAORN T, APICHAI T. Effect of pre-treatment approach of a carbon support on activity of PtSn/C electrocatalyts for direct ethanol fuel cells[J]. J Appl Electrochem, 2011, 41: 435-444.

    11. [11]

      [11] CHU D B, LI Z L, YUAN X M, LI J, WEI X, WAN Y. Electrocatalytic properties of carbon nanotubes supported ternary PtSnIn catalysts for ethanol electro-oxidation[J]. Electrochim Acta, 2012, 78(1): 644-648.

    12. [12]

      [12] XIAO P, SONG H Q, QIU X P. Study on the co-catalytic effect of titanate nanotubes on Pt-based catalysts in direct alcohol fuel cells[J]. Appl Catal B: Environ, 2010, 97(1/2): 204-212.

    13. [13]

      [13] LEE C G, UMEDA M. Cyclic voltammetric analysis of C1-C4 alcohol electrooxidations with Pt/C and Pt-Ru/C microporous electrodes[J]. J Power Sources, 2006, 160(1): 78-89.

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    3. [3]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    4. [4]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    5. [5]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    6. [6]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    8. [8]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    9. [9]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    10. [10]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    11. [11]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    12. [12]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    13. [13]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    14. [14]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    15. [15]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    16. [16]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    19. [19]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(0)
  • Abstract views(516)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return