Citation: HUANG Wei, WANG Jun-gang, SUN Zhi-qiang, LIU Jun-yi, HOU Bo, JIA Li-tao, LI De-bao. Effect of reduction temperature on performance of double mesoporous Co-based catalysts in Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(1): 81-86. shu

Effect of reduction temperature on performance of double mesoporous Co-based catalysts in Fischer-Tropsch synthesis

  • Corresponding author: LI De-bao, 
  • Received Date: 11 May 2013
    Available Online: 3 October 2013

    Fund Project: 国家自然科学基金(21203232,21273265)。 (21203232,21273265)

  • The double mesoporous Co-based catalysts were prepared by incipient-wetness impregnation method, which were characterized by the technology of XRD, BET, SEM and H2-TPR. And the influences of reduction temperature on the structure and performance of the catalysts in Fischer-Tropsch were investigated. The result showed that with the increase of reduction temperature, the active sites of catalysts increased, and the activity increased. After the activity reached a certain level, it began to decline. And the methane selectivity increased with the increase of reduction temperature. The related reactive performance might be due to the cobalt oxides on the surface of catalysts formed in the reaction, which made the water gas shift reaction become active, and the hydrocarbon products moved to low hydrocarbons.
  • 加载中
    1. [1]

      [1] JONGSOMJIT B, GOODWIN J G. Co-support compound formation in Co/Al2O3 catalysts: Effect of reduction gas containing CO[J]. Catal Today, 2002, 77(3): 191-204.

    2. [2]

      [2] 王野, 康金灿, 张庆红. 费托合成催化剂的研究进展[J]. 石油化工, 2009, 38(12): 1255-1263. (WANG Ye, KANG Jin-can, ZHANG Qing-hong, Research advances in catalysts for Fischer-Tropsch synthesis[J]. Petrochemical Technology, 2009, 38(12): 1255-1263.)

    3. [3]

      [3] KHODAKOV A Y, BECHARA R, GRIBOVAL-CONSTANT A. Fischer-Tropsch synthesis over silica supported cobalt catalysts: Mesoporous structure versus cobalt surface density[J]. Appl Catal A: Gen, 2003, 254(2): 273-288.

    4. [4]

      [4] KHODAKOV A Y, GRIBOVAL-CONSTANT A, BECHARA R, VILLAIN F. Pore-size control of cobalt dispersion and reducibility in mesoporous silicas[J]. J Phys Chem B, 2001, 105(40): 9805-9811.

    5. [5]

      [5] KHODAKOV A Y, GRIBOVAL-CONSTANT A, BECHARA R, ZHOLOBENKO V L. Pore size effects in Fischer Tropsch synthesis over cobalt-supported mesoporous silicas[J]. J Catal, 2002, 206(2): 230-241.

    6. [6]

      [6] WANG Y L, CHEN J G, FANG K G. Natural gas conversion Viii//Proceedings of the 8th Natural Gas Conversion Symposium. Natal, Brazil, 2007: 103-109.

    7. [7]

      [7] SHINODA M, ZHANG Y, YONEYAMA Y, HASEGAWA K, TSUBAKI N. New bimodal pore catalysts for Fischer-Tropsch synthesis[J]. Fuel Process Technol, 2004, 86(1): 73-85.

    8. [8]

      [8] ZHANG Y, KOIKE M, YANG R Q, HINCHIRANAN S, VITIDSANT T, TSUBAKI N. Multi-functional alumina-silica bimodal pore catalyst and its application for Fischer-Tropsch synthesis[J]. Appl Catal A: Gen, 2005, 292: 252-258.

    9. [9]

      [9] ZHANG Y, KOIKE M, TSUBAKI N. Preparation of alumina-silica bimodal pore catalysts for Fischer-Tropsch synthesis[J]. Catal Lett, 2005, 99(3/4): 193-198.

    10. [10]

      [10] WANG J G, LI D B, HOU B, JIA L T, CHEN J G, SUN Y H. Textural structure of Co-based catalysts and their performance for Fischer-Tropsch synthesis[J]. Catal Lett, 2010, 140(3/4): 127-133.

    11. [11]

      [11] VANSTEEN E, SEWELL G S, MAKHOTHE R A, MICKLETHWAITE C, MANSTEIN H, DELANGE M, OCONNOR C T. TPR study on the preparation of impregnated Co/SiO2 catalysts[J]. J Catal, 1996, 162(2): 220-229.

    12. [12]

      [12] SONG D C, LI J L. Effect of catalyst pore size on the catalytic performance of silica supported cobalt Fischer-Tropsch catalysts[J]. J Mol Catal A: Chem, 2006, 247(1/2): 206-212.

    13. [13]

      [13] O'SHEA V A D P, HOMS N, FIERRO J L G, DE LA PISCINA P R. Structural changes and activation treatment in a CO/SiO2 catalyst for Fischer-Tropsch synthesis[J]. Catal Today, 2006, 114(4): 422-427.

    14. [14]

      [14] DUCREUX O, LYNCH J, REBOURS B, ROY M, CHAUMETTE P. In situ characterisation of cobalt based Fischer-Tropsch catalysts: A new approach to the active phase[J]. Stud Sur Sci Catal, 1998, 119: 125-130.

    15. [15]

      [15] IGLESIA E. Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts[J]. Appl Catal A: Gen, 1997, 161(1/2): 59-78.

  • 加载中
    1. [1]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    4. [4]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    5. [5]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    8. [8]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    9. [9]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    10. [10]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    11. [11]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    14. [14]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    15. [15]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    16. [16]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    17. [17]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    18. [18]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    19. [19]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    20. [20]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

Metrics
  • PDF Downloads(0)
  • Abstract views(787)
  • HTML views(122)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return