Citation:
HUANG Wei, WANG Jun-gang, SUN Zhi-qiang, LIU Jun-yi, HOU Bo, JIA Li-tao, LI De-bao. Effect of reduction temperature on performance of double mesoporous Co-based catalysts in Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology,
;2014, 42(1): 81-86.
-
The double mesoporous Co-based catalysts were prepared by incipient-wetness impregnation method, which were characterized by the technology of XRD, BET, SEM and H2-TPR. And the influences of reduction temperature on the structure and performance of the catalysts in Fischer-Tropsch were investigated. The result showed that with the increase of reduction temperature, the active sites of catalysts increased, and the activity increased. After the activity reached a certain level, it began to decline. And the methane selectivity increased with the increase of reduction temperature. The related reactive performance might be due to the cobalt oxides on the surface of catalysts formed in the reaction, which made the water gas shift reaction become active, and the hydrocarbon products moved to low hydrocarbons.
-
-
-
[1]
[1] JONGSOMJIT B, GOODWIN J G. Co-support compound formation in Co/Al2O3 catalysts: Effect of reduction gas containing CO[J]. Catal Today, 2002, 77(3): 191-204.
-
[2]
[2] 王野, 康金灿, 张庆红. 费托合成催化剂的研究进展[J]. 石油化工, 2009, 38(12): 1255-1263. (WANG Ye, KANG Jin-can, ZHANG Qing-hong, Research advances in catalysts for Fischer-Tropsch synthesis[J]. Petrochemical Technology, 2009, 38(12): 1255-1263.)
-
[3]
[3] KHODAKOV A Y, BECHARA R, GRIBOVAL-CONSTANT A. Fischer-Tropsch synthesis over silica supported cobalt catalysts: Mesoporous structure versus cobalt surface density[J]. Appl Catal A: Gen, 2003, 254(2): 273-288.
-
[4]
[4] KHODAKOV A Y, GRIBOVAL-CONSTANT A, BECHARA R, VILLAIN F. Pore-size control of cobalt dispersion and reducibility in mesoporous silicas[J]. J Phys Chem B, 2001, 105(40): 9805-9811.
-
[5]
[5] KHODAKOV A Y, GRIBOVAL-CONSTANT A, BECHARA R, ZHOLOBENKO V L. Pore size effects in Fischer Tropsch synthesis over cobalt-supported mesoporous silicas[J]. J Catal, 2002, 206(2): 230-241.
-
[6]
[6] WANG Y L, CHEN J G, FANG K G. Natural gas conversion Viii//Proceedings of the 8th Natural Gas Conversion Symposium. Natal, Brazil, 2007: 103-109.
-
[7]
[7] SHINODA M, ZHANG Y, YONEYAMA Y, HASEGAWA K, TSUBAKI N. New bimodal pore catalysts for Fischer-Tropsch synthesis[J]. Fuel Process Technol, 2004, 86(1): 73-85.
-
[8]
[8] ZHANG Y, KOIKE M, YANG R Q, HINCHIRANAN S, VITIDSANT T, TSUBAKI N. Multi-functional alumina-silica bimodal pore catalyst and its application for Fischer-Tropsch synthesis[J]. Appl Catal A: Gen, 2005, 292: 252-258.
-
[9]
[9] ZHANG Y, KOIKE M, TSUBAKI N. Preparation of alumina-silica bimodal pore catalysts for Fischer-Tropsch synthesis[J]. Catal Lett, 2005, 99(3/4): 193-198.
-
[10]
[10] WANG J G, LI D B, HOU B, JIA L T, CHEN J G, SUN Y H. Textural structure of Co-based catalysts and their performance for Fischer-Tropsch synthesis[J]. Catal Lett, 2010, 140(3/4): 127-133.
-
[11]
[11] VANSTEEN E, SEWELL G S, MAKHOTHE R A, MICKLETHWAITE C, MANSTEIN H, DELANGE M, OCONNOR C T. TPR study on the preparation of impregnated Co/SiO2 catalysts[J]. J Catal, 1996, 162(2): 220-229.
-
[12]
[12] SONG D C, LI J L. Effect of catalyst pore size on the catalytic performance of silica supported cobalt Fischer-Tropsch catalysts[J]. J Mol Catal A: Chem, 2006, 247(1/2): 206-212.
-
[13]
[13] O'SHEA V A D P, HOMS N, FIERRO J L G, DE LA PISCINA P R. Structural changes and activation treatment in a CO/SiO2 catalyst for Fischer-Tropsch synthesis[J]. Catal Today, 2006, 114(4): 422-427.
-
[14]
[14] DUCREUX O, LYNCH J, REBOURS B, ROY M, CHAUMETTE P. In situ characterisation of cobalt based Fischer-Tropsch catalysts: A new approach to the active phase[J]. Stud Sur Sci Catal, 1998, 119: 125-130.
-
[15]
[15] IGLESIA E. Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts[J]. Appl Catal A: Gen, 1997, 161(1/2): 59-78.
-
[1]
-
-
-
[1]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[2]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[3]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[4]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[5]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[6]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[7]
Xueting Feng , Ziang Shang , Rong Qin , Yunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005
-
[8]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[9]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[10]
Xichen YAO , Shuxian WANG , Yun WANG , Cheng WANG , Chuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384
-
[11]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020
-
[12]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[13]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[14]
Jingkun Yu , Xue Yong , Ang Cao , Siyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015
-
[15]
Haoyu Sun , Dun Li , Yuanyuan Min , Yingying Wang , Yanyun Ma , Yiqun Zheng , Hongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007
-
[16]
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
-
[17]
Wang Wang , Yucheng Liu , Shengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059
-
[18]
Lutian Zhao , Yangge Guo , Liuxuan Luo , Xiaohui Yan , Shuiyun Shen , Junliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029
-
[19]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[20]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(814)
- HTML views(124)