Citation: MA Zhong, JIANG Qi-zhong, ZHANG Wu-gao, MA Zi-feng. CO2 reforming of dimethyl ether to produce hydrogen over La2O3/γ-Al2O3 catalyst[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(1): 74-80. shu

CO2 reforming of dimethyl ether to produce hydrogen over La2O3/γ-Al2O3 catalyst

  • Corresponding author: JIANG Qi-zhong, 
  • Received Date: 13 June 2013
    Available Online: 22 September 2013

    Fund Project: 国家自然科学基金(21276254)。 (21276254)

  • In this paper, La2O3/γ-Al2O3 catalysts with different La loading were prepared by incipient wetness impregnation method.This paper investigated the influence of La loading and reaction temperature on catalytic performance for the carbon dioxide reforming of DME. The catalysts were characterized by X-ray diffraction (XRD), BET surface area, transmission electron microscopy (TEM), thermogravimetry and differential thermal analysis(TG-DTA). The results showed that the La2O3/γ-Al2O3 with 15% La loading gave the best catalytic performance at 550 ℃.The selectivity of H2 and CO were 93.3% and 76.04%, and the conversion of CO2 and DME were about 85.4% and 100%, respectively, while the selectivity of byproduct CH4 is only 6.3%. This 15% La2O3/γ-Al2O3catalysts had more symmetrical distribution of particle size,larger specific surface area and more proper pore structure, and it kept stable performance during 4 h test. As a result, the catalyst average coking rate was only about 1.387 5 mg/(g·h).
  • 加载中
    1. [1]

      [1] ALEKLETT K, CAMPBELL C J. The peak and decline of world oil and gas production-minerals and energy[R]. Raw Mate Report, 2003, 18(1): 5-20.

    2. [2]

      [2] World energy outlook[Z]. International Energy Agency: Paris, France, 2004.

    3. [3]

      [3] 吴君华, 黄震, 乔信起, 张武高. 废气再循环对增压二甲醚发动机性能和排放影响的试验研究[J]. 内燃机学报, 2008, 26(2): 147-152. (WU Jun-hua, HUANG Zhen, QIAO Xin-qi, ZHANG Wu-gao.Experimental study of EGR on performance and emission of a turbocharged DME engine[J]. Transactions of Csice, 2008, 26(2): 147-152.)

    4. [4]

      [4] 倪维斗, 靳晖, 李政. 二甲醚经济: 解决中国能源与环境问题的重大关键[J]. 煤化工, 2003, 4(107): 3-9. (NI Wei-dou, JIN Hui, LI Zheng. DME economic is key to solve china's energy and environmental issues[J]. Coal Chemical Industry, 2003, 4(107): 3-9.)

    5. [5]

      [5] TSOLAKIS A, MEGARITIS A. Catalytic exhaust gas fuel reforming for diesel engines-effects of water addition of hydrogen production and fuel conversion efficiency[J]. Int J Hydrogen Energy, 2004, 29(13): 1409-1419.

    6. [6]

      [6] WANG W, RAMKUMAR S, FAN L S. Energy penalty of CO2 capture for the carbonation-calcination reaction (CCR) process: Parametric effects and comparisons with alternative processes[J]. Fuel, 2013, 104: 561-574.

    7. [7]

      [7] 黄震. 二甲醚-解决中国能源安全与环境保护之路[J]. 中国能源, 2005, 27(11): 37-39. (HUANG Zhen. DME of the road solve China's energy security and environmental protection[J]. Energy of China, 2005, 27(11): 37-39.)

    8. [8]

      [8] 丁福臣, 易玉峰. 制氢储氢技术[M]. 北京: 化学工业出版社, 2006. (DING Fu-chen, YI Yu-feng. Hydrogen production and hydrogen storage technology[M]. Beijing: Chemical Industry Press, 2006.)

    9. [9]

      [9] MURADOV N, SMITH F, T-RAISSI A. Hydrogen production by catalytic processing of renewable methane-rich gases[J]. Int J Hydrogen Energy, 2008, 33(8): 2023-2035.

    10. [10]

      [10] SEMELSBERGER T A, BORUP R L, GREENE H L. Dimethyl ether (DME) as an alternative fuel[J]. J Power Sources, 2006, 156(2): 497-511.

    11. [11]

      [11] 邹卫兵, 潘相敏, 王晓蕾, 寇素原, 马建新. Cu-Ni/γ-Al2O3双功能催化剂上二甲醚水蒸气重整制氢: 焙烧温度的影响[J]. 化工进展, 2011, 30(3): 547-551. (ZHOU Wei-bin, PAN Xiang-min, WANG Xiao-lei, KOU Su-yuan, MA Jian-xin. Steam reforming of dimethyl ether over Cu-Ni/γ-Al2O3 bi-functional catalyst: Effect of calcination temperature[J]. Chemical Industry and Engineering Progress, 2011, 30(3): 547-551.)

    12. [12]

      [12] 马忠, 蒋淇忠, 马紫峰. 车载二甲醚重整制氢技术的研究进展[J]. 化工进展, 2011, (2): 292-297. (MA Zhong, JIANG Qi-zhong, MA Zi-feng. Advance in onboard reforming technology of DME to hydrogen[J]. Chemical Industry and Engineering Progress, 2011, (2): 292-297.)

    13. [13]

      [13] MA Z, JIANG Q Z, WANG X, ZHANG W G, MA Z F. CO2 reforming of dimethyl ether over Ni/γ-Al2O3 catalyst[J]. Catal Commun, 2012, 17(2): 49-53.

    14. [14]

      [14] 杨成, 任杰, 孙予罕. CeO2和La2O3改性Pd/SymbolgA@-Al2O3甲醇低温分解催化剂的研究I. CeO2改性Pd/SymbolgA@-Al2O3催化剂的结构和性能[J]. 催化学报, 2001, 22(3): 283-286. (YANG Cheng, REN Jie, SUN Yu-han. Study of CeO2 and La2O3 modified Pd/SymbolgA@-Al2O3 catalyst for methanol decomposition at low temperature I. Structure and properties of CeO2 modified Pd/SymbolgA@-Al2O3 catalyst[J]. Chinese Journal of Catalysis, 2001, 22(3): 283-286.)

    15. [15]

      [15] 卢伟光, 龙军, 田辉平. 镧和铈改性对氧化铝性质的影响[J]. 催化学报, 2003, 24(8): 574-578. (LU Wei-guang, LONG Jun, TIAN Hui-ping. Effect of lanthanum and cerium modifiers on properties of alumina[J]. Chinese Journal of Catalysis, 2003, 24(8): 574-578.)

    16. [16]

      [16] 杨成, 任杰, 孙予罕. CeO2和La2O3改性Pd/SymbolgA@-Al2O3甲醇低温分解催化剂的研究Ⅱ. La2O3对Pd/CeO2/SymbolgA@-Al2O3催化剂结构和性能的影响[J]. 催化学报, 2001, 22(4): 339-342. (YANG Cheng, REN Jie, SUN Yu-han. Study of CeO2 and La2O3 modified Pd/γ-Al2O3 catalyst for methanol decomposition at low temperature Ⅱ. Effect of La2O3 on structure and properties of Pd/CeO2/γ-Al2O3 catalyst[J]. Chinese Journal of Catalysis, 2001, 22(4): 339-342.)

    17. [17]

      [17] GARCIA-DIEGUEZ M, HERRERA C, LARRUBIA M A, ALEMANY L J. CO2-reforming of natural gas components over a highly stable and selective Ni-Mg/Al2O3 nanocatalyst[J]. Catal Today, 2012, 197(1): 50-57.

    18. [18]

      [18] HU X, LU G X. Syngas production by CO2 reforming of ethanol over Ni/Al2O3 catalyst[J]. Catal Commun, 2009, 10(13): 1633-1637.

    19. [19]

      [19] 徐军科, 任克威, 周伟, 王晓蕾, 李兆静, 潘相敏, 马建新. 制备方法对甲烷干重整催化剂Ni/La2O3/Al2O3结构及性能的影响[J]. 燃料化学学报, 2009, 37(4): 473-479. (XU Jun-ke, REN Ke-wei, ZHOU Wei, WANG Xiao-lei, LI Zhao-jing, PAN Xaing-min, MA Jian-xin. Influence of preparation method on the properties and catalytic performance of Ni/La2O3/Al2O3 catalyst for dry reforming of methane[J]. Journal of Fuel Chemistry and Technology, 2009, 37(4): 473-479.)

    20. [20]

      [20] CHEN D, LDENG R, ANUNDSKAS A, OLSVIK O, HOLMEN A. Deactivation during carbon dioxide reforming of methane over Ni catalyst: Microkinetic analysis[J]. Chem Eng Sci, 2001, 56(2): 1371-1379.

    21. [21]

      [21] XU Z, LI Y M, ZHANG J Y, CHANG L, ZHOU R Q, DUAN Z T. Ultrafine NiO-La2O3/Al2O3 aerogel: A promising catalyst for CH4/CO2 reforming[J]. Appl Catal A: Gen, 2001, 213(1): 65-71.

    22. [22]

      [22] ROCHA K O, SANTOS J B O, MEIRA D, PIZANI P S, MARQUES C M P, ZANCHET D, BUENO J M C. Catalytic partial oxidation and steam reforming of methane on La2O3-Al2O3 supported Pt catalysts as observed by X-ray absorption spectroscopy[J]. Appl Catal A: Gen, 2012, 431/432: 79-87.

    23. [23]

      [23] HU X, LU G X. Syngas production by CO2 reforming of ethanol over Ni/Al2O3 catalyst[J]. Catal Commun, 2009, 10(13): 1633-1637.

  • 加载中
    1. [1]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    2. [2]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    3. [3]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    4. [4]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    5. [5]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    7. [7]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    8. [8]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    9. [9]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    10. [10]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    11. [11]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    12. [12]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    13. [13]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    14. [14]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    15. [15]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    16. [16]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    17. [17]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    18. [18]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    19. [19]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    20. [20]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

Metrics
  • PDF Downloads(0)
  • Abstract views(508)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return