Citation: KANG Min, ZHANG Jun, ZHAO Ning, WEI Wei, SUN Yu-han. CO production via thermochemical CO2 splitting over Ni ferrite-based catalysts[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(1): 68-73. shu

CO production via thermochemical CO2 splitting over Ni ferrite-based catalysts

  • Corresponding author: ZHAO Ning, 
  • Received Date: 11 July 2013
    Available Online: 3 September 2013

    Fund Project: 科技部国家科技支撑计划(2013BAC11B02) (2013BAC11B02)国家自然科学基金(21301186)。 (21301186)

  • The thermochemical CO2 splitting activity of NiFe2O4 and NiFe2O4/ZrO2 prepared by the conventional co-precipitation method was investigated with thermogravimetric analysis (TGA) technique. Significant sintering was observed over the two samples during cyclic reactions because of the high reaction temperature. This would lead to an incomplete re-oxidation of the reduced sample in the CO2 splitting reaction. Introduction of ZrO2 could greatly enhance the thermal stability of NiFe2O4, and hence, the cycling behavior in repeated cycles. The catalytic results of NiFe2O4/ZrO2 for cyclic splitting of CO2 in a high-temperature furnace indicate that CO productivity increased with the thermal reduction temperature, while the cycling stability severely decreased with the cyclic number.
  • 加载中
    1. [1]

      [1] MEIER A, STEINFELD A. Solar thermochemical production of fuels[J]. Adv Sci Technol, 2010, 74: 303-312.

    2. [2]

      [2] CENTI G, PERATHONER S. Towards solar fuels from water and CO2[J]. ChemSusChem, 2010, 3(2): 195-208.

    3. [3]

      [3] LOUTZENHISER P G, BARTHEL F, STAMATIOU A, STEINFELD A. CO2 reduction with Zn particles in a packed-bed reactor[J]. AIChE J, 2011, 57(9): 2529-2534.

    4. [4]

      [4] STAMATIOU A, LOUTZENHISER P G, STEINFELD A. Syngas production from H2O and CO2 over Zn particles in a packed-bed reactor[J]. AIChE J, 2011, 58(2): 625-631.

    5. [5]

      [5] ABANADES S, VILLAFAN-VIDALES I. CO2 and H2O conversion to solar fuels via two-step solar thermochemical looping using iron oxide redox pair[J]. Chem Eng J, 2011, 175: 368-375.

    6. [6]

      [6] LOUTZENHISER P G, GÁLVEZ M E, HISCHIER I, STAMATIOU A, FREI A, STEINFELD A. CO2 splitting via two-step solar thermochemical cycles with Zn/ZnO and FeO/Fe3O4 redox reactions Ⅱ: Kinetic analysis[J]. Energy Fuels, 2009, 23(5): 2832-2839.

    7. [7]

      [7] ABANADES S, VILLAFAN-VIDALES I. CO2 valorisation based on Fe3O4/FeO thermochemical redox reactions using concentrated solar energy[J]. Int J Energy Res, 2013, 37(6): 598-608.

    8. [8]

      [8] COKER E N, AMBROSINI A, RODRIGUEZ M A, MILLER J E. Ferrite-YSZ composites for solar thermochemical production of synthetic fuels: In operando characterization of CO2 reduction[J]. J Mater Chem, 2011, 21(29): 10767-10776.

    9. [9]

      [9] COKER E N, OHLHAUSEN J A, AMBROSINI A, MILLER J E. Oxygen transport and isotopic exchange in iron oxide/YSZ thermochemically-active materials via splitting of C(O-18)(2) at high temperature studied by thermogravimetric analysis and secondary ion mass spectrometry[J]. J Mater Chem, 2012, 22(14): 6726-6732.

    10. [10]

      [10] GÁLVEZ M E, LOUTZENHISER P G, HISCHIER I, STEINFELD A. CO2 Splitting via two-step solar thermochemical cycles with Zn/ZnO and FeO/Fe3O4 redox reactions: Thermodynamic analysis[J]. Energy Fuels, 2008, 22(5): 3544-3550.

    11. [11]

      [11] CHUEH W C, HAILE S M. Ceria as a thermochemical reaction medium for selectively generating syngas or methane from H2O and CO2[J]. ChemSusChem, 2009, 2(8): 735-739.

    12. [12]

      [12] GAL A L, ABANADES S, FLAMANT G. CO2 and H2O splitting for thermochemical production of solar fuels using nonstoichiometric ceria and ceria/zirconia solid solutions[J]. Energy Fuels, 2011, 25(10): 4836-4845.

    13. [13]

      [13] RUDISILL S G, VENSTROM L J, PETKOVICH N D, QUAN T T, HEIN N, BOMAN D B, DAVIDSON J H, STEIN A. Enhanced oxidation kinetics in thermochemical cycling of CeO2 through templated porosity[J]. J Phys Chem C, 2013, 117(4): 1692-1700.

    14. [14]

      [14] CHUEH W C, FALTER C, ABBOTT M, SCIPIO D, FURLER P, HAILE S M, STEINFELD A. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria[J]. Science, 2010, 330(6012): 1797-1801.

    15. [15]

      [15] KODAM T, GOKON N, YAMAMOTO R. Thermochemical two-step water splitting by ZrO2-supported NixFe3-xO4 for solar hydrogen production[J]. Sol Energy, 2008, 82(1): 73-79.

  • 加载中
    1. [1]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    2. [2]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    3. [3]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    4. [4]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    5. [5]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    6. [6]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    7. [7]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    9. [9]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    10. [10]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    11. [11]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    12. [12]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    13. [13]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    14. [14]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    15. [15]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    16. [16]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    17. [17]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    18. [18]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    19. [19]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    20. [20]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

Metrics
  • PDF Downloads(0)
  • Abstract views(719)
  • HTML views(141)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return