Citation: CHEN Yu-peng, HUANG Yan-qin, XIE Jian-jun, YIN Xiu-li, WU Chuang-zhi. Hydrothermal reaction of phenylalanine as a model compound of algal protein[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(1): 61-67. shu

Hydrothermal reaction of phenylalanine as a model compound of algal protein

  • Corresponding author: YIN Xiu-li, 
  • Received Date: 13 August 2013
    Available Online: 12 November 2013

    Fund Project: 国家自然科学基金(51106164)。 (51106164)

  • The decomposition behavior of phenylalanine, as a model compound of algal protein, in water at high temperature was investigated in a quartz mini-batch reactor. The conversion of phenylalanine at 130~190 ℃ as well as the decomposition pathways and nitrogen transition behavior in the hydrothermal process at 220~340 ℃ with a batch holding time of 5~240 min were determined. The results showed that the conversion of phenylalanine is extremely low at 130~190 ℃, which can be used as the reference temperature for extracting high value-added protein by hydrothermal liquefaction of algae. The major product at 220~280 ℃ is phenylethylamine; however, the yield of styrene is increased with the increase of reaction temperature and holding time. In water at high temperature, phenylethylamine is obtained via decarboxylation of phenylalanine, while styrene is produced via deamination of phenylethylamine under higher temperature and longer holding time; phenylethanol is further formed via the hydration of styrene. Most of nitrogen in phenylalanine is firstly transferred into phenylethylamine via the decarboxylation of phenylalanine, and then further transferred into water-soluble NH4+ via the deamination of phenylethylamine.
  • 加载中
    1. [1]

      [1] DEMIRBAS A. Use of algae as biofuel sources[J]. Energy Convers Manage, 2010, 51(12): 2738-2749.

    2. [2]

      [2] BRENNAN L, OWENDE P. Biofuels from microalgae-A review of technologies for production, proceeding and extraction of biofuels and co-products[J]. Renew Sust Energ Rev, 2010, 14(2): 557-577.

    3. [3]

      [3] BILLER P, ROSS A B. Hydrothermal processing of algal biomass for the production of biofuels and chemicals[J]. Biofuels, 2012, 3(5): 603-623.

    4. [4]

      [4] BARREIRO D L, PRINS W, RONSSE F, BRILMAN W. Hydrothermal liquefaction(HTL) of microalgae for biofuel production: State of the art review and future prospects[J]. Biomass Bioenergy, 2013, 53(6): 113-127.

    5. [5]

      [5] 朱锡峰, 陆强, 郑冀鲁, 郭庆祥, 朱清时. 生物质热解与生物油的特性研究[J], 太阳能学报, 2006, 27(12): 1285-1289. (ZHU Xi-feng, LU Qiang, ZHENG Ji-lu, GUO Qing-xiang, ZHU Qing-shi. Research on biomass pyrolysis and bio-oil characteristics[J]. Acta Energiae Solaris Sinica, 2006, 27(12): 1285-1289.)

    6. [6]

      [6] GARCIA-ALBA L, TORRI C, SAMORì C, SPEK J V D, FABBRI D, KERSTEN S R A, BRILMAN D W F. Hydrothermal treatment (HTT) of microalgae: Evaluation of the process as conversion method in an algae biorefinery concept[J]. Energy Fuels, 2012, 26(1): 642-657.

    7. [7]

      [7] ZHOU D, ZHANG L, ZHANG S, FU H, CHEN J. Hydrothermal liquefaction of macroalgae enteromorpha prolifera to bio-oil[J]. Energy Fuels, 2010, 24(7): 4054-4061.

    8. [8]

      [8] JENA U, DAS K C, KASTNER J R. Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis[J]. Bioresour Technol, 2011, 102(10): 6221-6229.

    9. [9]

      [9] BECKER E W. Micro-algae as a source of protein[J]. Biotechnol Adv, 2007, 25(2): 207-210.

    10. [10]

      [10] DOTE Y, SAWAYAMA S, INOUE S, MINOWA T, YOKOYAMA S. Recovery of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction[J]. Fuel, 1994, 73(12): 1855-1857.

    11. [11]

      [11] BROWN T M, DUAN P, SAVAGE P E. Hydrothermal liquefaction and gasification of nannochloropsis sp[J]. Energy Fuels, 2010, 24(6): 3639-3646.

    12. [12]

      [12] CHANGI S, ZHU M, SAVAGE P E. Hydrothermal reaction kinetics and pathways of phenylalanine alone and in binary mixtures[J]. ChemSusChem, 2012, 5(9): 1743-1757.

    13. [13]

      [13] SATO N, QUINTAIN A T, KANG K, DAIMON H, FUJIE K. Reaction kinetics of amino acid decomposition in high-temperature and high-pressure water[J]. Ind Eng Chem Res, 2004, 43(13): 3217-3222.

    14. [14]

      [14] ABDELMOEZ W, NAKAHASI T, YOSHIDA H. Amino acid transformation and decomposition in saturated subcritical water conditions[J]. Ind Eng Chem Res, 2007, 46(16): 5286-5294.

    15. [15]

      [15] ABDELMOEZ W, NAKAHASI T, YOSHIDA H. Pathways of amino acid transformation and decomposition in saturated subcritical water conditions[J]. Int J Chem React Eng, 2010, 8(1): 1-19.

    16. [16]

      [16] LI J, BRILL T B. Spectroscopy of hydrothermal reactions 25: Kinetics of the decarboxylation of protein amino acids and the effect of side chains on hydrothermalstability[J]. J Phys Chem A, 2003, 107(31): 5987-5992.

    17. [17]

      [17] GUO Y, WANG S, HUELSMAN C M, SAVAGE P E. Products, pathways, and kinetics for reactions of indole under supercritical water gasification conditions[J]. J Supercrit Fluid, 2013, 73(1): 161-170.

    18. [18]

      [18] MIAO C, CHAKRABORTY M, CHEN S. Impact of reaction conditions on the simultaneous production of polysaccharides and biooil from heterotrophically grown Chlorella sorokiniana by a unique sequential hydrothermal liquefaction process[J]. Bioresour Technol, 2012, 110(4): 617-627.

    19. [19]

      [19] CHAKRABORTY M, MIAO C, MCDONALD A, CHEN S. Concomitant extraction of bio-oil and value added polysaccharides from chlorella sorokiniana using a unique sequential hydrothermal extraction technology[J]. Fuel, 2012, 95(5): 63-70.

    20. [20]

      [20] ERDMENGER T, BECER C R, HOOGENBOOM R, SCHUBERT U S. Simplifying the free-radical polymerization of styrene: Microwave-assisted high-temperature auto polymerizations[J]. Aust J Chem, 2009, 62(1): 58-63.

    21. [21]

      [21] 赵群金, 徐桂端, 颜承农, 张忠海, 屈松生. 生物热分析研究1: 四种天然氨基酸热分解机理[J]. 氨基酸和生物资源, 1997, 19(4): 6-9. (ZHAO Qun-jin, XU Gui-duan, YAN Cheng-nong, ZHANG Zhong-hai, QU Song-sheng. Studies on biothermoanalysis 1: Thermal decomposition mechanism of four kinds of amino acids[J]. Amino Acids and Biotic Resources, 1997, 19(4): 6-9.)

    22. [22]

      [22] 张葆青. 石英玻璃的基本特性及石英管的正确使用方法[J]. 电力电子技术, 1994, 28(4): 58-61. (ZHANG Bao-qing. The essential characteristics of quarts glass and the proper usage of quartz tubes[J]. Power Electronics, 1994, 28(4): 58-61.)

    23. [23]

      [23] BILLER P, ROSS A B. Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content[J]. Bioresour Technol, 2011, 102(1): 215-225.

    24. [24]

      [24] JENA U, VAIDYANATHAN N, CHINNASAMY S, DAS K C. Evaluation of microalgae cultivation using recovered aqueous co-product from thermochemical liquefaction of algal biomass[J]. Bioresour Technol, 2011, 102(3): 3380-3387.

  • 加载中
    1. [1]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    4. [4]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    7. [7]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    8. [8]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    9. [9]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    10. [10]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    11. [11]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    12. [12]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    13. [13]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    14. [14]

      Feiyang Liu Liuhong Song Miaoyu Fu Zhi Zheng Gang Xie Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037

    15. [15]

      Xiaoyan Wang Chao Wang Dongmei Dai Yanling Geng Hongtao Gao . Design of Ideological and Political Education for the Experiment on Calcium Content Determination in Calcium Supplements. University Chemistry, 2024, 39(2): 162-167. doi: 10.3866/PKU.DXHX202307074

    16. [16]

      Jiangjuan Shao Xuan Li Jingdan Weng Xiaolei Chen Fei Xu Yulu Ma Nianguang Li Shizhong Zheng . Improvement in the Experimental Teaching Design of Physical and Chemical Identification and Quantification of Mineral Drugs. University Chemistry, 2024, 39(10): 137-142. doi: 10.3866/PKU.DXHX202312079

    17. [17]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    18. [18]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    19. [19]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    20. [20]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

Metrics
  • PDF Downloads(0)
  • Abstract views(600)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return