Citation: BAI Jing-ru, LI Xiao-hang, ZHANG Liang, JIA Chun-xia, WANG Qing. Microwave drying of Liushuhe oil shale and its effect on pyrolysis characteristics[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(1): 37-42. shu

Microwave drying of Liushuhe oil shale and its effect on pyrolysis characteristics

  • Corresponding author: BAI Jing-ru, 
  • Received Date: 8 May 2013
    Available Online: 19 October 2013

    Fund Project: 国家潜在油气资源(油页岩勘探开发利用)产学研用合作创新建设项目(OSR-05-02)。 (油页岩勘探开发利用)产学研用合作创新建设项目(OSR-05-02)

  • Drying pretreatment plays an important role in the use of oil shale. Microwave drying is a rapid, efficient and energy-saving method. A microwave drying experiment system was set up by remolding the household microwave oven, by which the microwave drying characters and the influence on the pyrolysis characteristic were investigated. The result shows that the time needed for microwave drying is about 20% of the one for traditional drying, and the rate of microwave drying is much higher than that of traditional drying. The Page model is suitable for describing the process of Liushuhe oil shale microwave drying. There is no difference in the changing curves of the pyrolysis activation energy with conversion for the microwave drying oil shale, hot-air drying oil shale and the original one. The trend of the curve first rises, then falls, and at x≈0.7 appears the maximum value. The activation energy changes between 80 kJ/mol and 200kJ/mol. At the same time, the activation energy of organic matter decomposition for the microwave drying oil shale pyrolysis is increased.
  • 加载中
    1. [1]

      [1] 钱家麟, 尹亮. 油页岩: 石油的补充能源[M]. 北京: 中国石化出版社, 2008. (QIAN Ja-lin, YIN Liang. Oil shale-alternative fuel[M]. Beijing: China Prochemical Press, 2008.)

    2. [2]

      [2] 桂江生, 应义斌. 微波干燥技术及其应用研究[J]. 农机化研究, 2003, (4): 153-154. (GUI Jiang-sheng, YING Yi-bing. Study on the application and microwave drying technology[J]. Journal of Agricultural Mechanization Research, 2003, (4): 153-154.)

    3. [3]

      [3] SOYSAL Y, OZTEKIN S, EREN O. Microwave drying of parsley: Modelling, kinetics, and energy aspects[J]. Biosyst Eng, 2006, 93(4): 403-413.

    4. [4]

      [4] ALIBAS O I, AKBUDAK B, AKBUDAK N. Microwave drying characteristics of spinach[J]. J Food Eng, 2007, 78(2): 577-583.

    5. [5]

      [5] MOHAMMAD A-H, ALA'A H A-M, MAGEE T R A. Microwave drying kinetics of tomato pomace: Effect of osmotic dehydration[J]. Chem Eng Pro: Pro Int, 2009, 48(1): 524-531.

    6. [6]

      [6] WALDE S G, BALASWAMY K, VELU V, RAO D G. Microwave drying and grinding characteristics of wheat (Triticum aestivum)[J]. J Food Eng, 2002, 55(3): 271-276.

    7. [7]

      [7] 王贤华, 陈汉平, 张世红, 杨海平. 生物质微波干燥及其对热解的影响[J]. 燃料化学学报, 2011, 39(1): 14-20. (WANG Xian-hua, CHEN Han-ping, ZHANG Shi-hong, ZHU Bo, YANG Hai-ping. Microwave drying of biomass and its effect on pyrolysis characteristics[J]. Journal of Fuel Chemistry and Technology, 2011, 39(1): 14-20.)

    8. [8]

      [8] MARLAND S, HAN B, MERCHANT A, ROWSON N. The effect of microwave radiation on coal grindability[J]. Fuel, 1999, 79(11): 1283-1288.

    9. [9]

      [9] MIKNIS F P, NETZEL D A, TURNER T F, WALLACE J C, BUTCHER C H. Effect of different drying methods on coal structure and reactivity toward liquefaction[J]. Energy Fuels, 1996, 10(3): 631-640.

    10. [10]

      [10] WANG Q, ZHANG L, BAI J R, LIU H P, LI S H. The influence of microwave drying on the physicochemical properties of Liushuhe oil shale[J]. Oil Shale, 2011, 28(1): 29-41.

    11. [11]

      [11] 王宝和. 干燥动力学研究综述[J]. 干燥技术与设备, 2009, 7(2): 51-56. (WANG Bao-he. Review of drying kinetics[J]. Drying Tehnology and Equipment, 2009, 7(2): 51-56.)

    12. [12]

      [12] 王擎, 徐峰, 孙佰仲, 刘洪鹏, 李少华, 关晓辉. 采用等转化率法研究油页岩热解的动力学特性[J]. 中国电机工程学报, 2001, 27(26): 35-39. (WANG Qing, XU Feng, SUN Bai-zhong, LIU Hong-peng, LI Shao-hua, GUAN Xiao-hui. Study on characteristics in pyrolysis process of oil shales by isoconversional method[J]. Proceedings of the CSEE, 2001, 27(26): 35-39.)

    13. [13]

      [13] WILLIAMS P T, AHMAD N. Investigation of oil-shale pyrolysis processing conditions using thermogravimetric analysis[J]. Appl Energy, 2000, 66(2): 113-133.

    14. [14]

      [14] WANG Q, LIU H P, SUN B Z, LI S H. Study on pyrolysis characteristics of huadian oil shale with isoconversional method[J]. Oil Shale, 2009, 26(2): 148-162.

    15. [15]

      [15] WANG Q, SUN B Z, HU A J, BAI J R, LI S H. Pyrolysis characteristics of Huadian oil shales[J]. Oil Shale, 2007, 24(2): 147-157.

  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    3. [3]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    4. [4]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    5. [5]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    6. [6]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    7. [7]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    8. [8]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    9. [9]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    10. [10]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    11. [11]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    12. [12]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    13. [13]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    14. [14]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    15. [15]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    16. [16]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    17. [17]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    18. [18]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    19. [19]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    20. [20]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

Metrics
  • PDF Downloads(0)
  • Abstract views(776)
  • HTML views(68)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return