Citation: DONG Yong, YU Min, WANG Peng, ZHANG Meng-ze, SUI Hui, CUI Lin, ZHANG Li-qiang, XU Xi-ren, MA Chun-yuan. Experimental study on mercury release behavior during coal pyrolysis with calcium chloride addition[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(1): 31-36. shu

Experimental study on mercury release behavior during coal pyrolysis with calcium chloride addition

  • Corresponding author: DONG Yong, 
  • Received Date: 2 April 2013
    Available Online: 26 July 2013

    Fund Project: 国家自然科学基金(51176103)。 (51176103)

  • Mercury release and speciation behavior during coal pyrolysis with the addition of calcium chloride in different chlorine contents of 0.1%,0.3% and 0.5% in mass was studied in a temperature-programmed tube furnace. The concentration of gaseous mercury was monitored online with an online mercury analyzer. The results show that the temperature is a key factor for the mercury releasing during coal pyrolysis. With the rising of calcium chloride addition in coal, the percentage of Hg2+ increases, while the temperature of maximum mercury releasing and the release of total mercury decrease. The percentage of Hg2+ also increases to some degrees with the increase of O2 percentage raised. Higher heating rate can promote the mercury release in coal and enhance the proportion of Hg2+ in flue gas. The study indicates that the calcium chloride addition into the low-chlorine coal can enhance the oxidation of Hg0.
  • 加载中
    1. [1]

      [1] 郑楚光, 张军营, 赵永椿, 刘晶, 郭欣.煤燃烧汞的排放及控制[D]. 北京: 科学出版社, 2010: 11. (ZHENG Chu-guang, ZHANG Jun-ying, ZHAO Yong-chun, LIU Jing, GUO Xin. Emission and control of mercury from coal combustion[D]. Beijing: Science Press, 2010: 11.)

    2. [2]

      [2] TOOLE-O'NEIL B, TEWALT S J, FINKELMAN R B, AKERS D J. Mercury concentration in coal-unraveling the puzzle[J]. Fuel, 1999, 78(1): 47-54.

    3. [3]

      [3] 任建莉, 周劲松, 骆仲泱, 岑可法. 煤中汞燃烧过程析出规律试验研究[J]. 环境科学学报, 2002, 22(3): 289-293. (REN Jian-li, ZHOU Jing-song, LUO Zhong-yang, CEN Ke-fa. Experimental study of mercury release behaviors in coal combustion[J]. Environmental Science & Technology, 2002, 22(3): 289-293.)

    4. [4]

      [4] TAN Y, MORTAZAV I R, DUREAU B, DOUGLAS M A. An investigation of mercury distribution and speciation during coal combustion[J]. Fuel, 2004, 83(16): 2229-2236.

    5. [5]

      [5] CHEN L, DUAN Y F, ZHUO Y Q, YANG L G, ZHANG L, YANG X H, YAO Q, JIANG Y M, XU X C. Mercury transformation across particulate control devices in six power plants of China: The co-effect of chlorine and ash composition[J]. Fuel, 2007, 86(4): 603-610.

    6. [6]

      [6] 陶叶, 禚玉群, 张亮, 陈昌和, 徐旭常. HCl与NO对汞氧化反应影响的实验研究[J]. 工程热物理学报, 2010, 31(2): 355-359. (TAO Ye, ZHOU Yu-qun, ZHANG Liang, CHEN Chang-he, XU Xu-chang. Experimental study of the effects of HCl and NO on mercury oxidation[J]. Journal of Engineering Thermophysics, 2010, 31(2): 355-359.)

    7. [7]

      [7] LIU K, GAO Y, KELLIE S, PAN W P, RILEY J T. A study of mercury removal in FBC systems fired with high-chlorine coals[J]. Combust Sci Technol, 2001, 164(1): 145-162.

    8. [8]

      [8] CHU P. An assessment of mercury emissions from US coal-fired power plants: CA, 1000608[P]. 2000-10-10.

    9. [9]

      [9] Information collection request for electric utility steam-generating unit Hg emissions information collection effort[Z].U.S. Environmental Protection Agency, Washington, DC, 1999.

    10. [10]

      [10] VIDIC R D, SILER D P. Vapor-phase elemental mercury adsorption by activated carbon impregnated with chloride and chelating agents[J]. Carbon, 2001, 39(1): 3-14.

    11. [11]

      [11] CHAO C C, PONTANIO S J. Adsorbents for mercury removal from flue gas: WO, 2006099291A2[P]. 2006-09-21.

    12. [12]

      [12] ZENG H C, JIN F, GUO J. Removal of elemental mercury from coal combustion flue gas by chloride-impregnated activated carbon[J]. Fuel, 2004, 83(1): 143-146.

    13. [13]

      [13] ZHUANG Y, THOMPSON J S, ZYGARLICKE C J, PAVLISH J H. Impact of calcium chloride addition on mercury transformations and control in coal flue gas[J]. Fuel, 2007, 86(15): 2351-2359.

    14. [14]

      [14] 潘卫国, 吴江, 王文欢, 何平, 张赢丹, 冷雪峰, 沈敏强. 添加NH4Cl对煤燃烧生成Hg和NO影响的研究[J]. 中国电机工程学报, 2009, 29(29): 41-46. (PAN Wei-guo, WU Jiang, WANG Wen-huan, HE Ping, ZHANG Ying-dan, LENG Xue-feng, SHEN Min-qiang. Study on the effect of NH4Cl addition on Hg and NO produced by coal combustion[J]. Proceedings of the CSEE, 2009, 29(29): 41-46.)

    15. [15]

      [15] 吴怡卫. 石灰石-石膏湿法烟气脱硫废水处理的研究[J]. 中国电力, 2006, 4(39): 75-78. (WU Yi-wei. Study of limestone-gypsum wet FGD wastewater treatment[J]. Electric Power, 2006, 4(39): 75-78.)

    16. [16]

      [16] 周卫青, 李进. 火电厂石灰石湿法烟气脱硫废水处理方法[J]. 电力环境保护, 2006, 22(1): 29-31. (ZHOU Wei-qing, LI Jin. Methods to treat waste water from limestone wet flue gas desulfurization in power plant[J]. Electric Power Environmental Protection, 2006, 22(1): 29-31.)

    17. [17]

      [17] 刘建权, 赵峰华, 刘璟, 李建国. 氧弹燃烧-离子色谱法测定煤中氯含量[J]. 分析化学研究报告, 2009, 37(8): 1152-1156. (LIU Jian-quan, ZHAO Feng-hua, LIU Jin, LI Jian-guo. Measurement of the chlorine content in coal with oxygen bomb combustion-ion chromatographic[J]. Chinese Journal of Analytical Chemistry, 2009, 37(8): 1152-1156.)

    18. [18]

      [18] 唐修义, 陈萍. 中国煤中的氯[J]. 中国煤田地质, 2002, 14(B07): 33-36. (TANG Xiu-yi, CHEN Ping. Chlorine in coal in China[J]. Coal Geology of China, 2002, 14(B07): 33-36.)

    19. [19]

      [19] 况敏, 杨国华, 胡文佳, 陈武军. 燃煤电厂烟气脱汞技术现状分析与展望[J]. 环境科学与技术, 2008, 31(5): 66-69. (KUANG Min, YANG Guo-hua, HU Wen-jia, CHEN Wu-jun. Analysis and prospect of technology for removing mercury from flue gas[J]. Environmental Science & Technology, 2008, 31(5): 66-69.)

    20. [20]

      [20] 郭少青, 杨建丽, 刘振宇. 热解气氛对晋城煤中汞析出的影响[J]. 燃料化学学报, 2008, 36(4): 397-400. (GUO Shao-qing, YANG Jian-li, LIU Zhen-yu. Influence of atmosphere on mercury release during Jin cheng coal pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2008, 36(4): 397-400.)

    21. [21]

      [21] 丘纪华. 煤粉在热分解过程中比表面积和孔隙结构的变化[J].燃料化学学报, 1994, 22(3): 316-319. (QIU Ji-hua. Variation of surface area and pore structure of pulverized coal during pyrolysis[J]. Journal of Fuel Chemistry and Technology, 1994, 22(3): 316-319.)

    22. [22]

      [22] 王明敏, 张建胜, 张守玉. 热解条件下对煤焦比表面积及孔隙分布的影响[J]. 煤炭学报, 2008, 33(1): 76-79. (WANG Ming-min, ZHANG Jian-sheng, ZHANAG Shou-yu.Effect of pyrolysis conditions on the char surface area and pore distribution[J]. Journal of China Coal Society, 2008, 33(1): 76-79.)

    23. [23]

      [23] 蒋旭光, 徐旭, 严建华, 池涌, 岑可法. 我国煤中氯含量分布特性的试验研究[J]. 煤炭转化, 2001, 24(2): 58-60. (JIANG Xu-guang, XU Xu, YAN Jian-hua, CHI Yong, Cen Ke-fa. Experimental research of chlorine distribution properties in Chinese coal[J]. Coal Convertion, 2001, 24(2): 58-60.)

  • 加载中
    1. [1]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    4. [4]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    5. [5]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    6. [6]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    7. [7]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    8. [8]

      Shengwen GuanZhaotong WeiNingxu HanYude WeiBin XuMing WangJunjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348

    9. [9]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    10. [10]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    11. [11]

      Huirong Chen Yingzhi He Yan Han Jianbo Hu Jiantang Li Yunjia Jiang Basem Keshta Lingyao Wang Yuanbin Zhang . A new SIFSIX anion pillared cage MOF with crs topological structure for efficient C2H2/CO2 separation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100508-100508. doi: 10.1016/j.cjsc.2024.100508

    12. [12]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    13. [13]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    16. [16]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    17. [17]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    18. [18]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    19. [19]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    20. [20]

      Yang LiuYan LiuKaiyin YangZhiruo ZhangWenbo ZhangBingyou YangHua LiLixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264

Metrics
  • PDF Downloads(0)
  • Abstract views(743)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return