Citation: MA Yan, HUANG Zhen-yu, TANG Hui-ru, WANG Zhi-hua, ZHOU Jun-hu, CEN Ke-fa. Mineral conversion of Zhundong coal during ashing process and the effect of mineral additives on its ash fusion characteristics[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(1): 20-25. shu

Mineral conversion of Zhundong coal during ashing process and the effect of mineral additives on its ash fusion characteristics

  • Corresponding author: HUANG Zhen-yu, 
  • Received Date: 20 June 2013
    Available Online: 2 September 2013

    Fund Project: 国家重点基础研究发展规划(973计划,2012CB214906)。 (973计划,2012CB214906)

  • Mineral conversion in heating process was studied by low temperature ashing, high temperature ashing and XRD. The results show that the original minerals in Zhundong coal mainly include calcite and kaolinite. With the increase of combustion temperature, they transform into fusible minerals such as fayalite and calcium. In addition, refractory minerals, ettringite and grossular, generated in ash samples, result in higher ash melting points with the decrease in SiO2/Al2O3 ratio which was adjusted by adding kaolinite and alumina into the raw coal.
  • 加载中
    1. [1]

      [1] VAN DYK J C, BENSON S A, LAUMB M L, WAANDERS B. Coal and coal ash characteristics to understand mineral transformations and slag formation[J]. Fuel, 2009, 6(88): 1057-1063.

    2. [2]

      [2] VASSILEV S V, KITANO K, TAKEDA S, TSURUE T. Influence of mineral and chemical composition of coal ashes on their fusibility[J]. Fuel Process Technol, 1995, 1(45): 27-51.

    3. [3]

      [3] 张琨, 李寒旭, 纪明俊, 杨和彦, 张冬梅. 淮南煤灰中晶体矿物组成与煤灰流动温度关系的研究[J]. 燃料化学学报, 2012, 40(9): 1044-1050. (ZHANG kun, LI Han-xu, JI Ming-jun, YANG He-yan, ZHANG Dong-mei. Relationship between crystal mineral composition of Huainan coal ash and its flow temperature[J]. Journal of Fuel Chemistry and Technology, 2012, 40(9): 1044-1050.)

    4. [4]

      [4] 李德侠, 周志杰, 郭庆华, 于广锁. 榆林煤灰熔融特性及黏温特性[J]. 化工学报, 2012, 63(1): 9-17. (LI De-xia, ZHOU Zhi-jie, GUO Qing-hua, YU Guang-suo. Ash fusion and viscosity-temperature characteristics of Yulin coal[J]. CIESC Journal, 2012, 63(1): 9-17.)

    5. [5]

      [5] 芦涛, 张雷, 张晔, 丰芸, 李韩旭. 煤灰中矿物质组成对煤灰熔融温度的影响[J]. 燃料化学学报, 2010, 38(1): 23-28. (LU Tao, ZHANG Lei, ZHANG Ye, FENG Yun, LI Han-xu. Effect of mineral composition on coal ash fusion temperature[J]. Journal of Fuel Chemistry and Technology, 2010, 38(1): 23-28.)

    6. [6]

      [6] 戴爱军. 煤灰成分对灰熔融性影响研究[J]. 洁净煤技术, 2007, 13(5): 23-26. (DAI Ai-jun. Research on influence of ash components in coal ash on ash fusibility[J]. Clean Coal Technology, 2007, 13(5): 23-26.)

    7. [7]

      [7] 杨建国, 邓芙蓉, 赵红, 岑可法. 煤灰熔融过程中的矿物演变及其对灰熔点的影响[J]. 中国电机工程学报, 2006, 26(17): 122-126. (YANG Jian-guo, DENG Fu-rong, ZHAO Hong, CEN Ke-fa. Mineral conversion of coal-ash in fusing process and the influence to ash fusion point[J]. Processing of the CSEE, 2006, 26(17): 122-126.)

    8. [8]

      [8] 李宝霞, 张济宇. 煤灰渣熔融特性的研究进展[J]. 现代化工, 2005, 25(5): 22-26, 28. (LI Bao-xia, ZHANG Ji-yu. Research progress of coal ash fusibility[J]. Modern Chemistry Industry, 2005, 25(5): 22-26, 28.)

    9. [9]

      [9] 刘桂建, 杨萍玥, 彭子成. 煤灰基本特征及其微量元素的分布规律[J]. 煤炭转化, 2003, 26(2): 81-86. (LIU Gui-jian, YANG Ping-yue, PENG Zi-cheng. Characteristics of coal ash and distribution of trace elements in Yanzhou mining district[J]. Coal Conversion, 2003, 26(2): 81-86.)

    10. [10]

      [10] 宋丽君. 等离子体灰化仪可用于测定煤中矿物质含量[J]. 仪器仪表与分析监测, 1994, (2): 30-32. (SONG Li-jun. Measurement of mineral contents in coal by Plasma ashing analyzer[J]. Instrumentation Analysis Monitoring, 1994, (2): 30-32.)

    11. [11]

      [11] 兰泽全, 曹欣玉, 周俊虎, 赵显桥, 饶甦, 周志军, 刘建忠, 岑可法. 炉内灰渣沉积物中矿物元素分布的电子探针分析[J]. 中国电机工程学报, 2005, 25(2): 117-122. (LAN Ze-quan, CAO Xin-yu, ZHOU Jun-hu, ZHAO XIan-qiao, RAO Su, ZHOU Zhi-jun, LIU Jian-zong, CEN Ke-fa. The electron probe analysis of mineral elementary distribution at ash deposition from furnace[J]. Proceeding of the CSEE, 2005, 25(2): 117-122.)

    12. [12]

      [12] 李帆, 邱建荣, 郑瑛. 煤燃烧过程矿物质行为研究[J]. 工程热物理学报, 1999, 20(2): 258-260. (LI Fan, QIU Jian-rong, ZHENG Ying. Study on behavior of mineral matters in coal during burning process[J]. Journal of Engineering Thermophysics, 1999, 20(2): 258-260.)

    13. [13]

      [13] 管嵘清, 杜梅芳, 李洁, 陈玉爽, 张忠孝. 煤灰中霞石与钠长石的光学性质对熔融特性影响[J]. 上海理工大学学报, 2010, 32(6): 597-601. (GUAN Rong-qing, DU Mei-fang, LI Jie, CHEN Yu-shuang, ZHANG Zong-xiao. Impact of optical properties of nepheline and albite on fusion characteristics in coal ash[J]. University of Shanghai for Science and Technology, 2010, 32(6): 597-601.)

    14. [14]

      [14] 李帆, 邱建荣, 郑楚光. 煤中矿物质对灰熔融温度影响的三元相图分析[J]. 华中理工大学学报, 1996, 24(10): 97-100. (LI Fan, QIU Jian-rong, ZHENG Chu-guang. The effect of mineral matter in coal on the ash melting point with ternary phase diagram[J]. Journal of Huangzhong University of Science and Technology, 1996, 24(10): 97-100.)

    15. [15]

      [15] ALPEN B, NAHUYS J, MARTINEZ L. Mineral matter in ashy and non-washable coals-its influence on chemical properties[J]. Commun Serv Geol Portugal, 1984, 70(2): 299-317.

    16. [16]

      [16] SEGGIANI M. Empirical correlations of the ash fusion temperatures and temperature of critical viscosity for coal and biomass ashes[J]. Fuel, 1999, 8(9): 1121-1125.

    17. [17]

      [17] 马永静. 矿物学角度研究添加剂对煤灰熔融性的作用及其机理. 太原: 太原理工大学, 2012. (MA Yong-jing. Study the effect of addictives on the fusibility of coal ash and its mechanism from a mineralogical point of view. Taiyuan: Taiyuan University of Technology, 2012.)

    18. [18]

      [18] 王泉清, 曾蒲君. 煤灰熔融性的研究现状与分析[J]. 煤炭转化, 1997, 20(2): 32-37. (WANG Quan-qing, ZENG Pu-jun. Present situation of the study of coal ash-fusion and its main points[J]. Coal Conversion, 1997, 20(2): 32-37.)

    19. [19]

      [19] 刘豪, 邱建荣, 李骏, 吴昊, 杨剑峰. 粉煤灰与复合添加剂的固相反应过程分析[J]. 燃料化学学报, 2002, 30(4): 306-310. (LIU Hao, QIU Jian-rong, LI Jun, WU Hao, YANG Jian-feng. Study on solid reaction process of firing fly ash and compound additives[J]. Journal of Fuel Chemistry and Technology, 2002, 30(4): 306-310.)

    20. [20]

      [20] 李继炳, 沈本贤, 赵基钢, 王基铭. 镁基助熔剂对刘桥二矿混煤灰熔融特性的影响[J]. 煤炭转化, 2009, 32(2): 37-40. (LI Jian-bing, SHEN Ben-xian, ZHAO Ji-gang, WANG Ji-ming. Effect of magnesium-based flux on the melting characteristics of coal ash from coal blends using the Liu Qiao No.2 coal mine[J]. Coal Conversion, 2009, 32(2): 37-40.)

    21. [21]

      [21] 代春梅. E-玻璃熔化过程中的物化反应及能量消耗[D]. 大连: 大连理工大学, 2008. (DAI Chun-mei. Physicochemical reactions and energy consumption of E-glass during melting[D]. Dalian: Dalian University of Technology, 2008.)

    22. [22]

      [22] 陈玉爽, 张忠孝, 乌晓江, 李洁, 管嵘清, 闫博. 配煤对煤灰熔融特性影响的实验与量化研究[J]. 燃料化学学报, 2009, 37(5): 521-526. (CHEN Yu-shuang, ZHANG Zong-xiao, WU Xiao-jiang, LI Jie, GUAN Rong-qing, YAN Bo. Quantum chemistry calculation and experimental study on coal ash fusion characteristics of blend coal[J]. Journal of Fuel Chemistry and Technology, 2009, 37(5): 521-526.)

    23. [23]

      [23] 杨南如, 钟白茜, 董攀, 王娟. 钙矾石的形成和稳定条件[J]. 硅酸盐学报, 1984, 12(2): 155-165. (YANG Nan-ru, ZHONG Bai-qian, DONG Pan, WANG Juan. Ettringite formation and conditions for its stability[J]. Journal of the Chinese Ceramic Society, 1984, 12(2): 155-165.)

    24. [24]

      [24] 冯培植, 李发堂, 华卫东. 煅烧制度对新型贝利特水泥的影响[J]. 水泥工程, 2000, (2): 8-10. (FENG Pei-zhi, LI Fa-tang, HUA Wei-dong. The effect of burning way on new Belite Cement[J]. Cement Engineering, 2002, (2): 8-10.)

  • 加载中
    1. [1]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    2. [2]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    3. [3]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    4. [4]

      Xiwen Xing Muyi Guo Zhuoran Hu Shunchun Yao Yao Sun . Context-Driven Teaching with Cue-Guided Reasoning: Taking X-Ray Teaching Practice as an Example. University Chemistry, 2025, 40(7): 141-147. doi: 10.12461/PKU.DXHX202409097

    5. [5]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    6. [6]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    7. [7]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    8. [8]

      Yuqiao Zhou Weidi Cao Shunxi Dong Lili Lin Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003

    9. [9]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 2309036-0. doi: 10.3866/PKU.WHXB202309036

    10. [10]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    11. [11]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    12. [12]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    13. [13]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    14. [14]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    15. [15]

      Yuqiong LiBing LanBin GuanChunlong DaiFan ZhangZifeng Lin . Molten Salt Derived Mo2CTx MXene with Excellent Catalytic Performance for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(9): 2306031-0. doi: 10.3866/PKU.WHXB202306031

    16. [16]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    17. [17]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    18. [18]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    19. [19]

      Ruilan Fan Xiaoling Huang . 磷源的选择及三种含磷阻燃剂的合成与阻燃性. University Chemistry, 2025, 40(8): 181-191. doi: 10.12461/PKU.DXHX202410025

    20. [20]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

Metrics
  • PDF Downloads(0)
  • Abstract views(783)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return