Citation: ZHOU Hua, JIANG Qing-qing, PAN Chun-xiu, SHUI Heng-fu, LEI Zhi-ping, WANG Zhi-cai. Co-thermal dissolution property of Shenfu coal and rice straw[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(1): 1-6. shu

Co-thermal dissolution property of Shenfu coal and rice straw

  • Corresponding author: SHUI Heng-fu, 
  • Received Date: 19 August 2013
    Available Online: 4 November 2013

    Fund Project: 国家重点基础研究发展规划(973计划,2011CB201302) (973计划,2011CB201302)国家自然科学基金(U1261208,21076001,20936007) (U1261208,21076001,20936007)科技部中日国际合作项目(2013DFG60060)。 (2013DFG60060)

  • The co-thermal dissolution (CTD) properties of Shenfu coal (SC) and rice straw (RS) in 1-methylnaphthalene (1-MN) at different temperatures were studied. It is found that RS gives much higher of thermal dissolution yield (TDY), suggesting its high thermal dissolution (TD) activity. But much amount of gas is produced in the TD process of RS, resulting in the low thermal soluble yield (TSY). For the TD of SC, although the TDYs of SC are much lower than those of RS, but the differences between TDY and TSY from the TD of SC are much smaller than those from the TD of RS. CTD of SC and RS shows that there exists synergistic effect which is the function of temperature. At 320 to 340℃, the TSYs have positive synergistic effect. The experimental results are larger than corresponding calculated weighted mean values of the individual TD of SC and RS. While at all the TD temperatures studied, TDYs give negative synergistic effect. The largest enhancements in TSY of 7.9% comparing with corresponding calculated weighted mean values of the individual TD of SC and RS are obtained at 320℃. The mechanism of synergistic effect produced in CTD was discussed based on the characterization of TD soluble fractions.
  • 加载中
    1. [1]

      [1] 尚琳琳, 程世庆, 张海清, 殷炳毅. 生物质与煤共热解时COS的析出特性研究[J]. 煤炭转化, 2007, 30(2): 18-21. (SHANG Lin-lin, CHENG Shi-qing, ZHANG Hai-qing, YIN Bing-yi. Investigation of the characteristics of COS released from coal/biomass blends during co-pyrolysis[J]. Coal Conversion, 2007, 30(2): 18-21.)

    2. [2]

      [2] VUTHALURU H B. Thermal behaviour of biomass/coal blends during co-pyrolysis[J]. Fuel Process Technol, 2004, 85(2): 141-155.

    3. [3]

      [3] 毛素, 张凡, 郭相坤, 申恬, 侯志刚, 王永刚. 兖州煤与木质素共液化反应性的研究[J]. 煤炭转化, 2010, 33(2): 31-34. (MAO Su, ZHANG Fan, GUO Xiang-kun, SHEN Tian, HOU Zhi-gang, WANG Yong-gang. Co-liquefaction reactivity of Yanzhou coal and lignin[J]. Coal Conversion, 2010, 33(2): 31-34.)

    4. [4]

      [4] 王志红, 董敏, 许德平, 刘鲤粽. 煤与生物质共液化研究进展[J]. 洁净煤技术, 2008, 14(2): 29-32. (WANG Zhi-hong, DONG Min, XU De-ping, LIU Li-zong. Study on co-liquefaction of coal and lignin[J]. Cleaning Coal Technology, 2008, 14(2): 29-32.)

    5. [5]

      [5] LALVANI S B, MUCHMORE C B, KOROPCHAK J, ABASH B, CHIVATE P, CHAVEZ C. Lignin-augmented coal depolymerization under mild reaction conditions[J]. Energy Fuel, 1991, 5: 347-352.

    6. [6]

      [6] 周华, 蔡振益, 水恒福, 雷智平, 王知彩, 李海平. 煤与稻杆共液化性能研究[J]. 燃料化学学报, 2011, 39(10): 721-727. (ZHOU Hua, CAI Zhen-yi, SHUI Heng-fu, LEI Zhi-ping, WANG Zhi-cai, LI Hai-ping. Co-liquefaction properties of Shenfu coal and rice straw[J]. Journal of Fuel Chemistry and Technology, 2011, 39(10): 721-727.)

    7. [7]

      [7] TAKANOHASHI T, SHISHIDO T, KAWASHIMA H, SAITO I. Characterisation of Hyper Coals from coals of various ranks[J]. Fuel, 2008, 87(4/5): 592-598.

    8. [8]

      [8] KASHIMURA N, TAKANOHASHI T, SAITO I. Upgrading the solvent used for the thermal extraction of sub-bituminous coal[J]. Energy Fuels, 2006, 20(5): 2063-2066.

    9. [9]

      [9] MASAKI K, YPSHIDA T, LI C, TAKANOHASHI T, SAITO I. The effects of pretreatment and the addition of polar compounds on the production of "HyperCoal" from subbituminous coals[J]. Energy Fuels, 2004, 18(4): 995-1000.

    10. [10]

      [10] SHARMA A, TAKANOHASHI T, MORISHITA K, TAKARADA T, SAITO I. Low temperature catalytic steam gasification of HyperCoal to produce H2 and synthesis gas[J]. Fuel, 2008, 87(4/5): 491-497.

    11. [11]

      [11] SHARMA A, KAWASHIMA H, SAITO I, TAKANOHASHI T. Structural characteristics and gasification reactivity of chars prepared from K2CO3 mixed HyperCoals and coals[J]. Energy Fuels, 2009, 23(4): 1888-1895.

    12. [12]

      [12] SHUI H F, ZHOU Y, LI H P, WANG Z C, LEI Z P, REN S B, PAN C X, WANG W W. Thermal dissolution of Shenfu coal in different solvents[J]. Fuel, 2013, 108: 385-390.

    13. [13]

      [13] SHUI H F, JIANG Q Q, CAI Z Y, WANG Z C, LEI Z P, REN S B, PAN C C, LI H P. Co-liquefaction of rice straw and coal using different catalysts[J]. Fuel, 2013, 109: 9-13.

  • 加载中
    1. [1]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    2. [2]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    3. [3]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    4. [4]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    5. [5]

      Kun Li Na Gao Shuangyan Huan Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068

    6. [6]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    7. [7]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    8. [8]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    9. [9]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    10. [10]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    13. [13]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    14. [14]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    15. [15]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    16. [16]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    17. [17]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    18. [18]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    19. [19]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    20. [20]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

Metrics
  • PDF Downloads(0)
  • Abstract views(578)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return