Citation: ZHONG Shan, FENG Jing-kun, CHEN Yang, KUANG Wei, PAN Jing, XIAN Si-yu, LIU Yuan-yuan. Thermal stabilization condition and mechanism of heavy metals in fly ash of solid waste incineration[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(12): 1532-1538. shu

Thermal stabilization condition and mechanism of heavy metals in fly ash of solid waste incineration

  • Corresponding author: ZHONG Shan, 
  • Received Date: 11 April 2013
    Available Online: 17 June 2013

    Fund Project:

  • The volatility and the stabilization of heavy metals in fly ash in municipality & agriculture mixed waste incineration(Type A) and municipal solid waste incineration(Type B) were investigated. And the heavy metals stabilization mechanism was studied by using FT-IR and XRD. The results indicate that the volatility of heavy metals is higher in type B than that in type A, and is significantly affected by the content of chloride in waste source. The volatility of heavy metals in fly ash varies in a sequence of Mn, Cr < Zn, Cu < Pb, Cd. More than 50% of Pb and Cd are volatilized when the temperature exceeds 1 000 ℃. The relatively optimal thermal treatment temperature is 800 ℃and the heavy metals stabilization is higher and the evaporation rate is lower. The primary mechanism of heavy metals stabilization is the formation of stable silicate structure system above 800 ℃.
  • 加载中
    1. [1]

      [1] AHMARUZZAMAN M. A review on the utilization of fly ash[J]. Prog Energy Combust Sci, 2010, 36(3): 327-363.

    2. [2]

      [2] MARTIN P, MICHAL T, PETR K, LADISLAV B. Waste incineration with production of clean and reliable energy[J]. Clean Technol Environ Policy, 2011, 13(4): 595-605.

    3. [3]

      [3] 于洁, 孙路石, 向军, 胡松, 苏胜, 邱建荣. 模拟城市生活垃圾热处理过程中Cd与Pb挥发特性研究[J]. 燃料化学学报, 2012, 40(8): 1019-1024. (YU Jie, SUN Lu-shi, XIANG Jun, HU Song, SU Sheng, QIU Jian-rong. Volatilization of Cd and Pb during thermal treatment of model solid waste in a fluidized bed incinerator[J]. Journal of Fuel Chemistry and Technology, 2012, 40(8): 1019-1024.)

    4. [4]

      [4] JUNG C H, MATSUTO T, TANAKA N, OKADA T. Metal distribution in incineration residues of municipal solid waste (MSW) in Japan[J]. Waste Manage, 2004, 24(4): 381-391.

    5. [5]

      [5] JIANG Y H, XI B D, LI X J. Effect of water-extraction on characteristics of melting and solidification of fly ash from municipal solid waste incinerator[J]. J Hazard Mater, 2009, 161(2/3): 871-877.

    6. [6]

      [6] JIN J, LI X D, CHI Y, YAN J H. Co-disposal of heavy metals containing waste water and medical waste incinerator fly ash by hydrothermal process with addition of sodium carbonate: A case study on Cu(Ⅱ) removal[J]. Water Air Soil Poll, 2010, 209(1/4): 391-400.

    7. [7]

      [7] 裘娜. 不同粒径城市垃圾焚烧飞灰中重金属的浸出规律研究[J]. 广东化工, 2012, 39(4): 274-276. (QIU Na. Lixiviation investigation of heavy metal in municipal solid waste incineration fly ash[J]. Guangdong Chemical Industry, 2012, 39(4): 274-276.)

    8. [8]

      [8] NOWAK B, PESSL A, ASCHENBRENNER P, SZENTANNAI P, MATTENBERGER H, RECHBERGER H, HERMANN L, WINTER F. Heavy metal removal from municipal solid waste fly ash by chlorination and thermal treatment[J]. J Hazard Mater, 2010, 179(1/3): 323-331.

    9. [9]

      [9] CHARLES H K L, JOHN P B, GORDON M. Utilization of municipal solid waste incineration ash in Portland cement clinker[J]. Clean Technol Environ Policy, 2011, 13(4): 607-615.

    10. [10]

      [10] SAIKIA N, CORNELIS G, MERTENS G, ELSEN J, VAN BALEN K, VAN GERVEN T, VANDECASTEELE C. Assessment of Pb-slag, MSWI bottom ash and boiler and fly ash for using as a fine aggregate in cement mortar[J]. J Hazard Mater, 2008, 154(1/3): 766-777.

    11. [11]

      [11] 刘敬勇, 孙水裕. 固体添加剂对垃圾掺烧污泥焚烧飞灰高温过程中重金属挥发特性的影响[J]. 燃料化学学报, 2012, 40(12): 1512-1520. (LIU Jing-yong, SUN Shui-yu. Effect of solid additive on heavy metal vaporization of fly ash from co-incineration of MSW with sludge at high temperature[J]. Journal of Fuel Chemistry and Technology, 2012, 40(12): 1512-1520.)

    12. [12]

      [12] 张金龙, 李要建, 王贵全, 邓晶, 徐永香, 盛宏至. 垃圾焚烧飞灰玻璃化的控制参数[J]. 燃烧科学与技术, 2012, 18(2): 186-191. (ZHANG Jin-long, LI Yao-jian, WANG Gui-quan, DENG Jing, XU Yong-xiang, SHENG Hong-zhi. Parameter on waste incinerator fly ash vitrification[J]. Journal of Combustion Science and Technology, 2012, 18(2): 186-191.)

    13. [13]

      [13] JUNG C H, MATSUTO T. Behavior of metals in ash melting and gasification-melting of municipal solid waste(MSW)[J]. Waste Manage, 2005, 25(3): 301-310.

    14. [14]

      [14] WANG K S, SUN C J, LIU C Y. Effect of the type of sintering atmosphere on the chromium leach ability of thermal-treated municipal solid waste incinerator fly ash[J]. Waste Manage, 2001, 21(1): 85-91.

    15. [15]

      [15] 丁世敏. 重庆垃圾焚烧飞灰重金属污染特性研究[D]. 重庆: 重庆大学资源与环境学院, 2007. (DING Shi-min. Pollution properties of heavy metals in municipal solid waste incineration fly ash in Chongqing[D]. Chongqing: Chongqing University, 2007.)

    16. [16]

      [16] 丁永福, 班玲. 广西土壤环境背景值应用开发初探[J]. 中国环境监测, 1993, 9(3): 41-42. (DING Yong-fu, BAN Ling. Initial exploration of soil background values in Guangxi area[J]. Environmental Monitoring in China, 1993, 9(3): 41-42.)

    17. [17]

      [17] TOLEDO J M, CORELLA J, CORELLA L M. The partitioning of heavy metals in incineration of sludge and waste in a bubbling fluidized bed[J]. J Hazard Mater, 2005, 126(B): 158-168.

  • 加载中
    1. [1]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

    2. [2]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    3. [3]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    4. [4]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    5. [5]

      Zhaohu Li Weidong Wang Yuhao Liu Mingzhe Han Lingling Wei Huan Jiao . Research on the Safety Management and Disposal of Chemical Laboratory Waste. University Chemistry, 2024, 39(10): 128-136. doi: 10.3866/PKU.DXHX202312090

    6. [6]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    7. [7]

      Hongsheng Tang Yonghe Zhang Dexiang Wang Xiaohui Ning Tianlong Zhang Yan Li Hua Li . A Wonderful Journey through the Kingdom of Hazardous Chemicals. University Chemistry, 2024, 39(9): 196-202. doi: 10.12461/PKU.DXHX202403098

    8. [8]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    9. [9]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    10. [10]

      Limin Shao Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086

    11. [11]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    12. [12]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    13. [13]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    14. [14]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    15. [15]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    16. [16]

      Yuanyuan JIANGFangfang TUYuhong ZHANGShi CHENJiayuan XIANGXinhui XIA . Preparation and electrochemical properties of high-stability cathode prelithiation additive. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1101-1111. doi: 10.11862/CJIC.20240441

    17. [17]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    18. [18]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    19. [19]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    20. [20]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

Metrics
  • PDF Downloads(0)
  • Abstract views(1023)
  • HTML views(154)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return