Citation: WANG Yuan-yang, YAN Rui-feng. Effect of imidazolium-based ionic liquids as electrolytes on the performance of fuel cell[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(12): 1520-1524. shu

Effect of imidazolium-based ionic liquids as electrolytes on the performance of fuel cell

  • Corresponding author: WANG Yuan-yang, 
  • Received Date: 11 April 2013
    Available Online: 23 July 2013

    Fund Project:

  • Five imidazolium-based ionic liquids were used as the electrolytes and their effects on the performance of fuel cell were investigated in a free electrolyte fuel cell. The results indicated that with H2 as fuel, the cell potential and the power density at the same current density decrease following the sequence of [Bmim]BF4 > [Bmim]PF6 > NaOH >> [Bmim]Cl > [Bmim]Br > [Bmim]HSO4; on the contrary, when methane is used as fuel, the cell potential and the power density decrease following the sequence of [Bmim]Br > [Bmim]HSO4 > [Bmim]Cl > NaOH > [Bmim]BF4 > [Bmim]PF6. When [Bmim]BF4 is used as the electrolyte of H2 fuel cell, both of the cell potential and the power density decrease with the increase of temperature and water content in the ionic liquid.
  • 加载中
    1. [1]

      [1] GROVE W R. On a gaseous voltaic battery[J]. Journal of the Franklin Institute, 1843, 35(4): 277-280.

    2. [2]

      [2] 科学技术部关于印发电动汽车科技发展"十二五"专项规划的通知[EB/OL]. http://www.most.gov.cn/tztg/201204/t20120420_93807.htm, 2012-4-20. (Notification on "twelfth five-year" electric vehicle technology development special planning issued by Chinese ministry of science and technology[EB/OL]. http://www.most.gov.cn/tztg/201204/t20120420_ 93807.htm, 2012-4-20.)

    3. [3]

      [3] 屈树国, 李建隆. 高温质子交换膜燃料电池用离子液体聚合物电解质的研究进展[J]. 化工进展, 2012, 31(12): 2660-2665. (QU Shu-guo, LI Jian-long. Research progress of ionic liquid polymer electrolyte used for high temperature proton exchange membrane fuel cells[J]. Chemical Industry and Engineering Progress, 2012, 31(12): 2660-2665.)

    4. [4]

      [4] SOUZA R F, PADILHA J C, GONCALVES R S, DUPONT J. Room temperature dialkyl-imidazolium ionic liquid-based fuel cells[J]. Electrochem Commun, 2003, 5(8): 728-731.

    5. [5]

      [5] 闫瑞锋, 王远洋. 无溶剂微波反应法合成烷基咪唑类离子液体的研究[C/CD]. 第二届全国离子液体与绿色过程学术会议论文集, 2011年11月, 广州, PA201. (YAN Rui-feng, WANG Yuan-yang. Study on solvent-free synthesis of alkyl imidazoles ionic liquids by microwave reaction method[C/CD]. Proceedings of Second National Conference on Ionic Liquids and Green Process, November, 2011, Guangzhou, PA201.)

    6. [6]

      [6] 王凤华, 郭瑞松, 魏楸桐. SOFC阳极用NiO-YSZ粉末的制备技术[J]. 硅酸盐通报, 2004, 23(34): 81-84. (WANG Feng-hua, GUO Rui-song, WEI Qiu-tong. Preparation technologies of NiO-YSZ powders for SOFC anode[J]. Bulletin of the Chinese Ceramic Society, 2004, 23(34): 81-84.)

    7. [7]

      [7] 罗凌虹, 吴也凡, 李志明, 王程程, 程亮, 石纪军. 柠檬酸法合成SOFC阴极粉体Lal-xSrxMnO(3-δ)的研究[J]. 稀有金属材料与工程, 2009, 38(z2): 704-707. (LUO Ling-hong, WU Ye-fan, LI Zhi-ming, WANG Cheng-cheng, CHENG Liang, SHI Ji-jun. Investigation of Nanosized La(1-x)SrxMnO(3-δ) powder prepared by citric acid method[J]. Rare Metal Materials and Engineering, 2009, 38(z2): 704-707.)

    8. [8]

      [8] DYSON P J, LAURENCZY G, OHLIN C A, VALLANCE J, WELTON T. Determination of hydrogen concentration in ionic liquids and the effect(or lack of) on rates of hydrogenation[J]. Chem Commun, 2003, (19): 2418-2419.

    9. [9]

      [9] 张秀玲, 周倩, 底兰波, 于淼. 离子液体在甲烷等离子体转化中作用机理的光谱研究[J]. 光谱学与光谱分析, 2012, 32(11): 2906-2910. (ZHANG Xiu-ling, ZHOU Qian, DI Lan-bo, YU Miao. Study on mechanism of ionic liquid for methane plasma conversion using spectra method[J]. Spectroscopy and Spectral Analysis, 2012, 32(11): 2906-2910.)

    10. [10]

      [10] FEI Z, ZHAO D, TILMANN J, GELDBACH, SCOPELLITI R, DYSON P. Bronsted acidic ionic liquid and their zwitterions: Synthesis, characterization and pKa determination[J]. Chem Eur J, 2004, 10(19): 4886-4893.

    11. [11]

      [11] O'HAYRER, S W, COLELLAW, FRITZ B. Prinz, fuel cell fundamentals (2nd Edition)[M]. John Wiley & Sons Press, 2009.

  • 加载中
    1. [1]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    2. [2]

      Shiqi Zhang Heng Zhang Aiwen Lei . 从物理化学的角度看化学能的利用. University Chemistry, 2025, 40(6): 310-315. doi: 10.12461/PKU.DXHX202408124

    3. [3]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    4. [4]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    5. [5]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048

    6. [6]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    7. [7]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    8. [8]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    9. [9]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    10. [10]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    11. [11]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    12. [12]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    13. [13]

      Doudou QinJunyang DingChu LiangQian LiuLigang FengYang LuoGuangzhi HuJun LuoXijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-0. doi: 10.3866/PKU.WHXB202310034

    14. [14]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    15. [15]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    16. [16]

      Rui YangHui LiQingfei MengWenjie LiJiliang WuYongjin FangChi HuangYuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053

    17. [17]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    18. [18]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    19. [19]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    20. [20]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

Metrics
  • PDF Downloads(0)
  • Abstract views(369)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return