Citation: LIANG Hao, SONG Xi-jun, YIN Ze-qun, ZHANG Xi-wen, FANG Xiang-chen. Performance of Fe2O3/LaFeO3 as oxygen carrier in chemical-looping hydrogen generation[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(12): 1512-1519. shu

Performance of Fe2O3/LaFeO3 as oxygen carrier in chemical-looping hydrogen generation

  • Corresponding author: LIANG Hao, 
  • Received Date: 7 March 2013
    Available Online: 4 May 2013

  • Fe2O3/LaFeO3 was prepared by citric acid complexation method and used as oxygen carrier in chemical-looping hydrogen generation; the effect of Fe2O3/CH4 ratio, stream amount and metal loading on the performance of Fe2O3/LaFeO3 as oxygen carrier at 900 ℃ and atmospheric pressure were investigated. The results showed that the oxygen carrier performs best with CH4 conversion of 60% and single-loop H2 output of 45 mL, when the ratio of Fe2O3/CH4, stream input and Fe loading are 2, 0.1 mL, 15%, respectively. The XRD and H2-TPR results suggest that the active site is the adsorbed oxygen rather than metal oxide; the easier for the reduction of the adsorbed oxygen, the higher are the conversion of CH4 and the output of H2. Moreover, the oxygen carrier is still in perovskite structure and CH4 conversion and H2 output remain stable even after 60 cycles.
  • 加载中
    1. [1]

      [1] 王艳辉, 吴迪镛, 迟建. 氢能及制氢的应用技术现状及发展趋势[J]. 化工进展, 2001, 20(1): 6-8. (WANG Yan-hui, WU Di-yong, CHI Jian. The status and development current of hydrogen energy and its application technology[J]. Chemical Industry and Engineering Progress, 2001, 20(1): 6-8.)

    2. [2]

      [2] BARRETO L, MAKIHIRA A, RIAHI K. The hydrogen economy in the 21st century: A sustainable development scenario[J]. Int J Hydrogen Energy, 2003, 28(3): 267-284.

    3. [3]

      [3] 王金全, 王春明, 张永, 徐晔, 贾东升. 氢能发电及其应用前景[J]. 解放军理工大学学报(自然科学版), 2002, 3(6): 50-56. (WANG Jin-quan, WANG Chun-ming, ZHANG Yong, XU Ye, JIA Dong-sheng. Hydrogen-power and its prospects for applications[J]. Journal of Pla University of Science and Technology(Natural Science Edition), 2002, 3(6): 50-56.)

    4. [4]

      [4] 卢玲玲, 王树众, 姜峰, 胡昕. 化学链燃烧技术的研究现状及进展[J]. 现代化工, 2007, 27(8): 17-22. (LU Ling-ling, WANG Shu-zhong, JIANG Feng, HU Xin. Research status and advances in chemical-looping combustion[J]. Modern Chemical Industry, 2007, 27(8): 17-22.)

    5. [5]

      [5] FAN L H, LI F X, RAMKUMAR S. Utilization of chemical looping strategy in coal gasification processes[J]. Particuology, 2008, 6(3): 131-142.

    6. [6]

      [6] RYDEN M, LYNGFELT A. Using steam reforming to produce hydrogen with carbon dioxide capture by chemical-looping combustion[J]. Int J Hydrogen Energy, 2006, 31(10): 1271-1283.

    7. [7]

      [7] YANG J B, CAI N S, LI Z S. Hydrogen production from the steam-iron process with direct reduction of iron oxide by chemical looping combustion of coal char[J]. Energy Fuels, 2008, 22(4): 2570-2579.

    8. [8]

      [8] 向文国, 狄藤藤. Ni载体整体煤气化链式燃烧联合循环性能[J]. 化工学报, 2007, 58(7): 1816-1821. (XIANG Wen-guo, DI Teng-teng. Performance investigation of Ni-based CLC gasification combined cycle[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(7): 1816-1821.)

    9. [9]

      [9] ADANEZ J, GARCIA-LABIANO F, DE DIEGO L F, GAYAN P, CELAYA J, ABAD A. Nickel-copper oxygen carriers to reach zero CO and H2 emissions in chemical-looping combustion[J]. Ind Eng Chem Res, 2006, 45: 2617-2625.

    10. [10]

      [10] 高正平, 沈来宏, 肖军. 基于NiO载氧体的煤化学链燃烧实验[J]. 化工学报, 2008, 59(5): 1242-1249. (GAO Zheng-ping, SHEN Lai-hong, XIAO Jun. Chemical looping combustion of coal based on NiO oxygen carrier[J]. Journal of Chemical Industry and Engineering(Chiina), 2008, 59(5): 1242-1249.)

    11. [11]

      [11] 段维慧, 张建民, 陈磊, 屈星星, 林浩. 化学链燃烧技术的研究现状[J]. 山西能源与节能, 2007, 44(1): 31-34. (DUAN Wei-hui, ZHANG Jian-min, CHEN Lei, QU Xing-xing, LIN Hao. Research status of chemical looping combustion technology[J]. ShanXi Energy and Conservation, 2007, 44(1): 31-34)

    12. [12]

      [12] 刘黎明, 赵海波, 郑楚光. 化学链燃烧方式中氧载体的研究进展[J]. 煤炭转化, 2006, 29(3): 83-92. (LIU Li-ming, ZHAO Hai-bo, ZHENG Chu-guang. Advance on oxygen carriers of chemical-looping combustion[J]. Coal Conversion, 2006, 29(3): 83-92.)

    13. [13]

      [13] BEDEL L, ROGER A C, ESTOURNED C, KIENNEMANN A.CoO from partial reduction of La(Co, Fe)O3 perovskites for Fischer-Tropsch synthesis[J]. Catal Today, 2003, 85(2/4): 207-218.

    14. [14]

      [14] 郭文锋, 徐庆, 陈文, 黄端平, 王皓, 袁润章. La0.8Ca0.2Cr0.3O3钙钛矿复合氧化物的GNP法合成与表征[J]. 稀有金属材料与工程, 2005, 34(12): 1886-1889. (GUO Wen-feng, XU Qing, CHEN Wen, HUANG Rui-ping, WANG Hao, YUAN Run-zhang. Characterization of perovskite-type composite oxides of La0.8Ca0.2Cr0.3O3 synthesized by the glycine-nitrate process[J]. Rare Metal Materials and Engineering, 2005, 34(12): 1886-1889.)

    15. [15]

      [15] 郑瑛, 边关, 罗聪, 吴琪珑, 郑楚光. 钙钛矿型复合载氧体的制备及释氧性能研究[J]. 中国电机工程学报, 2011, 31(35): 90-96. (ZHENG Ying, BIAN Guan, LUO Cong, WU Qi-long, ZHENG Chu-guang. Investigation on the preparation and oxygen desorption ability of different perovskite sorbents[J]. Proceedings of the CSEE, 2011, 31(35): 90-96.)

    16. [16]

      [16] 张慧敏, 胡瑞生, 胡佳楠, 张玉龙. La2CoAlO6催化剂的指标及其甲烷催化燃烧性能[J].物理化学学报, 2011, 27(5): 1169-1175. (ZHANG Hui-min, HU Rui-sheng, HU Jia-nan, ZHANG Yu-long. Preparation and catalytic activities of La2CoAlO6 for methane combustion[J]. Acta Physico-Chimica Sinica, 2011, 27(5): 1169-1175.)

    17. [17]

      [17] 代小平, 余长春. LaMO3纳米复合钙钛矿氧载体化学循环重整甲烷制合成气[J]. 催化学报, 2011, 32(8): 1411-1417. (DAI Xiao-ping, YU Chang-chun. Nano-perovskite-based (lamo3) oxygen carrier for syngas generation by chemical-looping reforming of methane[J]. Chinese Journal of Catalysis, 2011, 32(8): 1411-1417.)

  • 加载中
    1. [1]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    2. [2]

      Yao MaXin ZhaoHongxu ChenWei WeiLiang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 2309045-0. doi: 10.3866/PKU.WHXB202309045

    3. [3]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    4. [4]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    5. [5]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    6. [6]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    7. [7]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    8. [8]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    9. [9]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    10. [10]

      Rui LiHuan LiuYinan JiaoShengjian QinJie MengJiayu SongRongrong YanHang SuHengbin ChenZixuan ShangJinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011

    11. [11]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    12. [12]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    13. [13]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    14. [14]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    15. [15]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    16. [16]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    17. [17]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    18. [18]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    19. [19]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    20. [20]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

Metrics
  • PDF Downloads(0)
  • Abstract views(370)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return