Citation: ZHANG Ye-long, LI Yuan-yuan, JIA Chen, HAN Yu-wang, HU Yi. Research on stop-effect on the catalytic dehydration of ethanol over HZSM-5[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(12): 1495-1501. shu

Research on stop-effect on the catalytic dehydration of ethanol over HZSM-5

  • Corresponding author: HAN Yu-wang, 
  • Received Date: 22 April 2013
    Available Online: 5 June 2013

    Fund Project:

  • The stop-effect phenomenon on the catalytic dehydration of ethanol over HZSM-5 zeolite was observed. That is, when stopping ethanol-water feed for a period of time and restoring the feed, a dramatic increase on ethylene selectivity could be found. At different reaction conditions, it was found that the stop-effect was enhanced by increasing the stop time and reaction temperature or decreasing the feed speed. When the ethanol concentration was kept at 55%, the stop-effect could be strengthened and the high ethylene selectivity was maintained at long time. 500 h catalyst stability test showed that the stop-effect can improve the life span of the catalyst effectively. By studying the aqueous ethanol dehydration mechanism and experimental results, the preliminary conclusion is that causes of the stop-effect on the catalytic dehydration of ethanol over HZSM-5 is the accumulation of ethoxy intermediate and regeneration of empty catalytic active sites in stop operation.
  • 加载中
    1. [1]

      [1] 胡燚, 李慧, 黄和, 胡耀池. 生物乙烯开发进展与产业化[J]. 现代化工, 2009, 29(1): 6-9. (HU Yi, LI Hui, HUANG He, HU Yao-chi. Development progress and industrialization of bio-ethylene[J]. Modern Chemical Industry, 2009, 29(1): 6-9.)

    2. [2]

      [2] 王红秋, 郑轶丹. 世界乙烯工业发展现状与展望[J]. 国际石油经济, 2010, 10: 51-56. (WANG Hong-qiu, ZHENG Yi-dan. Present and future status of the global ethylene industry[J]. International Petroleum Economics, 2010, 10: 51-56.)

    3. [3]

      [3] 潘锋, 吴玉龙, 张建安, 童军茂. 生物发酵乙醇催化脱水制乙烯发展状况[J]. 现代化工, 2006, 26(S2): 27-29. (PAN Feng, WU Yu-long, ZHANG Jian-an, TONG Jun-mao. Development status of ethylene production by catalytic dehydration of fermented alcohol[J]. Modern Chemical Industry, 2006, 26(S2): 27-29.)

    4. [4]

      [4] 刘铭, 初旭明, 李慧, 胡燚. Fe2O3/γ-Al2O3催化乙醇脱水制乙烯[J]. 石油化工, 2010, 39(8): 861-865. (LIU Ming, CHU Xu-ming, LI Hui, HU Yi. Catalytic dehydration of ethanol to ethylene over Fe2O3/γ-Al2O3 [J]. Petrochemical Technology, 2010, 39(8): 861-865.)

    5. [5]

      [5] 沈德建, 刘宗章, 张敏华. ZSM-5上乙醇催化脱水制乙烯的研究进展[J]. 分子催化, 2011, 25(4): 348-35. (SHEN De-jian, LIU Zong-zhang, ZHANG Min-hua. Study of catalytic dehydration of ethanol into ethylene over ZSM-5[J]. Journal of Molecular Catalysis(China), 2011, 25(4): 348-35.)

    6. [6]

      [6] ZHANG X, WANG R J, YANG X X, ZHANG F B. Comparison of four catalysts in the catalytic dehydration of ethanol to ethylene[J]. Micropor Mesopor Mater, 2008, 116(1/3): 210-215.

    7. [7]

      [7] HAN Y W, LU C Y, XU D S, ZHANG Y L, HU Y, HUANG H. Molybdenum oxide modified HZSM-5 catalyst: Surface acidity and catalytic performance for the dehydration of aqueous ethanol[J]. Appl Catal A: Gen, 2011, 396(1/2): 8-13.

    8. [8]

      [8] 陆翠云, 张叶龙, 卢圣国, 韩毓旺. Mo/HZSM-5催化乙醇制备乙烯的性能研究[J]. 石油化工, 2011, 40(12): 1281-1286. (LU Cui-yun, ZHANG Ye-long, LU Sheng-guo, HAN Yu-wang, Ethanol dehydration to ethylene over Mo/HZSM-5 catalyst[J]. Petrochemical Technology, 2011, 40(12): 1281-1286.)

    9. [9]

      [9] BI J D, GUO X W, LIU M, WANG X S. High effective dehydration of bio-ethanol into ethylene over nanoscale HZSM-5 zeolite catalysts[J]. Catal Today, 2010, 149(1/2): 143-147.

    10. [10]

      [10] KOUBEK J, PASEK J, RUZICKA V. Exploitation of a nonstationary kinetic phenomenon for the elucidation of surface progresses in a catalytic reaction[C]. New horizons in catalysis, Amsterdam-Tokyo: Elsevier-Kodansha, 1980: 853-862.

    11. [11]

      [11] KOUBEK J, PASEK J, RUZICKA V. Stationary and nonstationary deactivation of alumina and zeolites in elimination reactions[C]. Catal Deactivation, Amsterdam: Elsevier, 1980: 251-260.

    12. [12]

      [12] PEKAI M, KOUBEK J. Modelling study of transient behaviour of elimination reactions of alcohols and amines on oxide catalysts[J]. J Mol Catal A: Chem, 1997, 123(2/3): 131-139.

    13. [13]

      [13] MORAVEK V, KRAUS M. Transient behavior of the system ethanol-diethyl ether-water-alumina[J]. J Catal, 1984, 87(2): 452-460.

    14. [14]

      [14] MORAVEK V. Steady-state and transient kinetics of displacement adsorption and educt inhibition in dehydration of alcohols on alumina[J]. J Catal, 1992, 133: 170-178.

    15. [15]

      [15] RENKEN A. Reactor performance enhancement under periodic operation for the ethanol dehydration over r-alumina, a reaction with a stop-effect[J]. Chem Eng Sci, 1999, 54: 4469-4474.

    16. [16]

      [16] GOLAY S, DOEPPER R, RENKEN A. In-situ characterization of the surface intermediates for the ethanol dehydration reaction over r-alumina under dynamic conditions[J]. Appl Catal A: Gen, 1998, 172: 97-106.

    17. [17]

      [17] GOLAY S, WOLFRATH O, DOEPPER R, RENKEN A. Model discrimination for reactions with stop-effect[J]. Stud Surf Sci Catal, 1997, 109: 295-304.

    18. [18]

      [18] THULLIE J, RENKEN A. Forced concentration oscillations for catalytic reactions with stop-effect[J]. Chem Eng Sci, 1991, 46(4): 1083-1088.

    19. [19]

      [19] 董娇娇, 朱瑾, 申群兵, 刘子玉, 朱学栋, 朱子彬. MoO3/HZSM-5催化剂上重芳烃加氢脱烷基反应[J]. 石油化工, 2008, 37(3): 232-237. (DONG Jiao-jiao, ZHU Jin, SHEN Qun-bing, LIU Zi-yu, ZHU Xue-dong, ZHU Zi-bin. Hydrodealkylation of heavy aromatics on MoO3/HZSM-5 catalyst[J]. Petrochemical Technology, 2008, 37(3): 232-237.)

    20. [20]

      [20] 李斌, 李景林, 梁宇宁. Mo/HZSM-5分子筛的表征和液相催化酯化活性[J]. 广西大学学报, 1999, 24(1): 57-60. (LI Bin, LI Jing-lin, LIANG Yu-ning. Characteristics and activity of catalytic esterification in liquid phase of Mo/HZSM-5 zeolites[J]. Journal of Guangxi University, 1999, 24(1): 57-60.)

    21. [21]

      [21] CORY P, RAVINDRA D. Production of ethylene from hydrous ethanol on H-ZSM-5 under mild conditions[J]. Ind Eng Chem Res, 1997, 36(11): 4466-4475.

    22. [22]

      [22] CHIANG H, BHAN A. Catalytic consequences of hydroxyl group location on the rate and mechanism of parallel dehydration reactions of ethanol over acidic zeolites[J]. J Catal, 2010, 271(2): 251-261.

    23. [23]

      [23] SCHULZ J, BANDERMANN F. Conversion of ethanol over zeolite H-ZSM-5[J]. Chem Eng Technol, 1994, 17(3): 179-186.

  • 加载中
    1. [1]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    2. [2]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    3. [3]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    4. [4]

      Bolin Sun Jie Chen Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032

    5. [5]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    6. [6]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    7. [7]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    8. [8]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    9. [9]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    10. [10]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    11. [11]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    12. [12]

      Ruoqian Zhang Chaoqun Mu Yali Hou Mingming Zhang . 四苯乙烯基多组分金属有机笼的构筑及其固态发光性能研究. University Chemistry, 2025, 40(8): 277-283. doi: 10.12461/PKU.DXHX202410027

    13. [13]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    14. [14]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    15. [15]

      Yan Xiao Shuling Li Yifan Li Jianing Fan Linlin Shi . Discovering the Beauty of Life: Adding Some “Ingredients” to Crystals. University Chemistry, 2024, 39(6): 366-372. doi: 10.3866/PKU.DXHX202312025

    16. [16]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    20. [20]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

Metrics
  • PDF Downloads(0)
  • Abstract views(493)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return