Citation: ZHANG Ye-long, LI Yuan-yuan, JIA Chen, HAN Yu-wang, HU Yi. Research on stop-effect on the catalytic dehydration of ethanol over HZSM-5[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(12): 1495-1501. shu

Research on stop-effect on the catalytic dehydration of ethanol over HZSM-5

  • Corresponding author: HAN Yu-wang, 
  • Received Date: 22 April 2013
    Available Online: 5 June 2013

    Fund Project:

  • The stop-effect phenomenon on the catalytic dehydration of ethanol over HZSM-5 zeolite was observed. That is, when stopping ethanol-water feed for a period of time and restoring the feed, a dramatic increase on ethylene selectivity could be found. At different reaction conditions, it was found that the stop-effect was enhanced by increasing the stop time and reaction temperature or decreasing the feed speed. When the ethanol concentration was kept at 55%, the stop-effect could be strengthened and the high ethylene selectivity was maintained at long time. 500 h catalyst stability test showed that the stop-effect can improve the life span of the catalyst effectively. By studying the aqueous ethanol dehydration mechanism and experimental results, the preliminary conclusion is that causes of the stop-effect on the catalytic dehydration of ethanol over HZSM-5 is the accumulation of ethoxy intermediate and regeneration of empty catalytic active sites in stop operation.
  • 加载中
    1. [1]

      [1] 胡燚, 李慧, 黄和, 胡耀池. 生物乙烯开发进展与产业化[J]. 现代化工, 2009, 29(1): 6-9. (HU Yi, LI Hui, HUANG He, HU Yao-chi. Development progress and industrialization of bio-ethylene[J]. Modern Chemical Industry, 2009, 29(1): 6-9.)

    2. [2]

      [2] 王红秋, 郑轶丹. 世界乙烯工业发展现状与展望[J]. 国际石油经济, 2010, 10: 51-56. (WANG Hong-qiu, ZHENG Yi-dan. Present and future status of the global ethylene industry[J]. International Petroleum Economics, 2010, 10: 51-56.)

    3. [3]

      [3] 潘锋, 吴玉龙, 张建安, 童军茂. 生物发酵乙醇催化脱水制乙烯发展状况[J]. 现代化工, 2006, 26(S2): 27-29. (PAN Feng, WU Yu-long, ZHANG Jian-an, TONG Jun-mao. Development status of ethylene production by catalytic dehydration of fermented alcohol[J]. Modern Chemical Industry, 2006, 26(S2): 27-29.)

    4. [4]

      [4] 刘铭, 初旭明, 李慧, 胡燚. Fe2O3/γ-Al2O3催化乙醇脱水制乙烯[J]. 石油化工, 2010, 39(8): 861-865. (LIU Ming, CHU Xu-ming, LI Hui, HU Yi. Catalytic dehydration of ethanol to ethylene over Fe2O3/γ-Al2O3 [J]. Petrochemical Technology, 2010, 39(8): 861-865.)

    5. [5]

      [5] 沈德建, 刘宗章, 张敏华. ZSM-5上乙醇催化脱水制乙烯的研究进展[J]. 分子催化, 2011, 25(4): 348-35. (SHEN De-jian, LIU Zong-zhang, ZHANG Min-hua. Study of catalytic dehydration of ethanol into ethylene over ZSM-5[J]. Journal of Molecular Catalysis(China), 2011, 25(4): 348-35.)

    6. [6]

      [6] ZHANG X, WANG R J, YANG X X, ZHANG F B. Comparison of four catalysts in the catalytic dehydration of ethanol to ethylene[J]. Micropor Mesopor Mater, 2008, 116(1/3): 210-215.

    7. [7]

      [7] HAN Y W, LU C Y, XU D S, ZHANG Y L, HU Y, HUANG H. Molybdenum oxide modified HZSM-5 catalyst: Surface acidity and catalytic performance for the dehydration of aqueous ethanol[J]. Appl Catal A: Gen, 2011, 396(1/2): 8-13.

    8. [8]

      [8] 陆翠云, 张叶龙, 卢圣国, 韩毓旺. Mo/HZSM-5催化乙醇制备乙烯的性能研究[J]. 石油化工, 2011, 40(12): 1281-1286. (LU Cui-yun, ZHANG Ye-long, LU Sheng-guo, HAN Yu-wang, Ethanol dehydration to ethylene over Mo/HZSM-5 catalyst[J]. Petrochemical Technology, 2011, 40(12): 1281-1286.)

    9. [9]

      [9] BI J D, GUO X W, LIU M, WANG X S. High effective dehydration of bio-ethanol into ethylene over nanoscale HZSM-5 zeolite catalysts[J]. Catal Today, 2010, 149(1/2): 143-147.

    10. [10]

      [10] KOUBEK J, PASEK J, RUZICKA V. Exploitation of a nonstationary kinetic phenomenon for the elucidation of surface progresses in a catalytic reaction[C]. New horizons in catalysis, Amsterdam-Tokyo: Elsevier-Kodansha, 1980: 853-862.

    11. [11]

      [11] KOUBEK J, PASEK J, RUZICKA V. Stationary and nonstationary deactivation of alumina and zeolites in elimination reactions[C]. Catal Deactivation, Amsterdam: Elsevier, 1980: 251-260.

    12. [12]

      [12] PEKAI M, KOUBEK J. Modelling study of transient behaviour of elimination reactions of alcohols and amines on oxide catalysts[J]. J Mol Catal A: Chem, 1997, 123(2/3): 131-139.

    13. [13]

      [13] MORAVEK V, KRAUS M. Transient behavior of the system ethanol-diethyl ether-water-alumina[J]. J Catal, 1984, 87(2): 452-460.

    14. [14]

      [14] MORAVEK V. Steady-state and transient kinetics of displacement adsorption and educt inhibition in dehydration of alcohols on alumina[J]. J Catal, 1992, 133: 170-178.

    15. [15]

      [15] RENKEN A. Reactor performance enhancement under periodic operation for the ethanol dehydration over r-alumina, a reaction with a stop-effect[J]. Chem Eng Sci, 1999, 54: 4469-4474.

    16. [16]

      [16] GOLAY S, DOEPPER R, RENKEN A. In-situ characterization of the surface intermediates for the ethanol dehydration reaction over r-alumina under dynamic conditions[J]. Appl Catal A: Gen, 1998, 172: 97-106.

    17. [17]

      [17] GOLAY S, WOLFRATH O, DOEPPER R, RENKEN A. Model discrimination for reactions with stop-effect[J]. Stud Surf Sci Catal, 1997, 109: 295-304.

    18. [18]

      [18] THULLIE J, RENKEN A. Forced concentration oscillations for catalytic reactions with stop-effect[J]. Chem Eng Sci, 1991, 46(4): 1083-1088.

    19. [19]

      [19] 董娇娇, 朱瑾, 申群兵, 刘子玉, 朱学栋, 朱子彬. MoO3/HZSM-5催化剂上重芳烃加氢脱烷基反应[J]. 石油化工, 2008, 37(3): 232-237. (DONG Jiao-jiao, ZHU Jin, SHEN Qun-bing, LIU Zi-yu, ZHU Xue-dong, ZHU Zi-bin. Hydrodealkylation of heavy aromatics on MoO3/HZSM-5 catalyst[J]. Petrochemical Technology, 2008, 37(3): 232-237.)

    20. [20]

      [20] 李斌, 李景林, 梁宇宁. Mo/HZSM-5分子筛的表征和液相催化酯化活性[J]. 广西大学学报, 1999, 24(1): 57-60. (LI Bin, LI Jing-lin, LIANG Yu-ning. Characteristics and activity of catalytic esterification in liquid phase of Mo/HZSM-5 zeolites[J]. Journal of Guangxi University, 1999, 24(1): 57-60.)

    21. [21]

      [21] CORY P, RAVINDRA D. Production of ethylene from hydrous ethanol on H-ZSM-5 under mild conditions[J]. Ind Eng Chem Res, 1997, 36(11): 4466-4475.

    22. [22]

      [22] CHIANG H, BHAN A. Catalytic consequences of hydroxyl group location on the rate and mechanism of parallel dehydration reactions of ethanol over acidic zeolites[J]. J Catal, 2010, 271(2): 251-261.

    23. [23]

      [23] SCHULZ J, BANDERMANN F. Conversion of ethanol over zeolite H-ZSM-5[J]. Chem Eng Technol, 1994, 17(3): 179-186.

  • 加载中
    1. [1]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    2. [2]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    3. [3]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    4. [4]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    5. [5]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    6. [6]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    7. [7]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    8. [8]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    9. [9]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    10. [10]

      Yu Peng Jiawei Chen Yue Yin Yongjie Cao Mochou Liao Congxiao Wang Xiaoli Dong Yongyao Xia . 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-. doi: 10.1016/j.actphy.2025.100087

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    14. [14]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    15. [15]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    16. [16]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    17. [17]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    18. [18]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    19. [19]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    20. [20]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

Metrics
  • PDF Downloads(0)
  • Abstract views(472)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return