Citation:
CHEN Jia-ning, LIU Yong-mei. Effects of Mn-K synergistic action on iron-based catalyst for CO hydrogenation to light olefins[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(12): 1488-1494.
-
The catalyst samples with different Fe, Mn and K proportions were prepared by the typical method.The catalyst were characterized by X-ray diffraction(XRD), N2-adsorption, Raman, scanning electron microscope (SEM) and their performance for CO hydrogenation to light olefins was investigated. The results showed that the incorporation of Mn with appropriate contents can improve the dispersion of the active phase and suppress the carbon chain growth. The interaction of Fe-Mn can not effectively increase olefin/paraffin ratio. Active iron species precursor(α-Fe2O3) are more advantageous to olefin formation reaction. Mn oxides are restrained by the addition of K, giving rise to more crystal defects of FeMn compound. As a result, a higher yield of light olefins is acquired for Fe-Mn-K than Fe-Mn and Fe-K catalytic system.
-
-
-
[1]
[1] 王野, 成康, 张庆红. 一氧化碳加氢制碳氢化合物反应选择性的调控[J]. 中国科学: 化学, 2012, 42(4): 363-375. (WANG Ye, CHENG Kang, ZHANG Qing-hong. Selectivity tuning for the hydrogenation of carbon monoxide into hydrocarbons[J]. Scientia Sinica Chimica, 2012, 42(4): 363-375.)
-
[2]
[2] 胡浩, 叶丽萍, 应卫勇, 房鼎业. 国外甲醇制烯烃生产工艺与反应器开发现状[J]. 现代化工, 2008, 28(1): 82-86. (HU hao, YE Li-ping, YING Wei-yong, FANG Ding-ye. Advancement on methanol-to-olefin process technology and reactor design overseas[J]. Modern Chemical Industry, 2008, 28(1): 82-86.)
-
[3]
[3] FRANCESCA L B, SACHIN C, UNNI O, MARILYNE B, FABIEN O, BENOIT L. Conversion of methanol into light olefins over ZSM-5 zeolite: Strategy to enhance propene selectivity[J]. App Catal A: Gen, 2012, 447: 178-185.
-
[4]
[4] ZHANG Q H, KANG J C, WANG Y. Development of novel catalysts for Fischer-Tropsch synthesis: Tuning the product selectivity[J]. Chem Cat Chem, 2010, 2(9): 1030-1058.
-
[5]
[5] JENSEN K B, MASSOTH F E. Studies on iron-manganese oxide carbon monoxide catalysts: I. Structure of reduced catalyst[J]. J Catal, 1985, 92(1): 98-108.
-
[6]
[6] MALESSA R, BAERNS M. Iron/manganese oxide catalysts for Fischer-Tropsch synthesis. 4. Activity and selectivity[J].Ind Eng Chem Res, 1988, 27(2): 279-283.
-
[7]
[7] LEITH I R, HOWDEN M G. Temperature-programmed reduction of mixed iron-manganese oxide catalysts in hydrogen and carbon monoxide[J].Appl Catal, 1988, 37: 75-92.
-
[8]
[8] ERIKSSON S, NYLEN U, ROJAS S, BOUTONNET M. Preparation of catalysts from microemulsions and their applications in heterogeneous catalysis[J]. Appl Catal A: Gen, 2004, 265(2): 207-219.
-
[9]
[9] DAS C K, DAS N S, CHOUDHURY D P, RAVICHANDRAN G, CHAKRABARTY D K. Hydrogenation of carbon monoxide on unsupported Fe-Mn-K catalysts for the synthesis of lower alkenes: Promoter effect of manganese[J]. Appl Catal A: Gen, 1994, 111(2): 119-132.
-
[10]
[10] WANG C, WANG Q, SUN X, XU L. CO hydrogenation to light alkenes over Mn/Fe catalysts prepared by coprecipitation and sol-gel methods[J].Catal Lett, 2005, 105(1): 93-101.
-
[11]
[11] HUO C F, WU B S, GAO P, YANG Y, LI Y W, JIAO H J. The mechanism of potassium promoter: Enhancing the stability of active surfaces[J].Angew Chem Int Ed, 2011, 50(32): 7403-7406.
-
[12]
[12] DE SMIT E, WECKHUYSEN B M. The renaissance of iron-based Fischer-Tropsch synthesis: On the multifaceted catalyst deactivation behaviour[J]. Chem Soc Rev, 2008, 37(12): 2758-2781.
-
[13]
[13] YANG L X, ZHU Y J, TONG H, WANG W W, CHENG G F. Low temperature synthesis of Mn3O4 polyhedral nanocrystals and magnetic study[J]. J Solid State Chem, 2006, 179(4): 1225-1229.
-
[14]
[14] 郭荷芹, 李德宝, 陈从标, 范志宏, 孙予罕. V2O5/CeO2催化剂上甲醇氧化一步法合成二甲氧基甲烷[J]. 催化学报, 2012, 33(5): 813-818. (GUO He-qin, LI De-bao, CHEN Cong-biao, FAN Zhi-hong, SUN Yu-han. One-step oxidation of methanol to dimethoxymethane on V2O5/CeO2 catalyst[J]. Chinese Journal of Catalysis, 2012, 33(5): 813-813.)
-
[15]
[15] De FARIA D L A, SILVA SV, De OLIVEIRA M T. Raman microspectroscopy of some iron oxides and oxyhydroxides[J].J Raman Spectrosc, 1997, 28(11): 873-878.
-
[16]
[16] DUBAL D P, DHAWALE D S, SALUNKHE R R, LOKHANDE C D. Conversion of interlocked cube-like Mn3O4 into nanoflakes of layered birnessite MnO2 during supercapacitive studies[J]. J Alloy Compd, 2010, 496(2): 370-375.
-
[17]
[17] SANKAR K V, SENTHILKUMAR S T, BERCHMANS L J, SANJEEVIRAJA C, SELVAN R K. Effect of reaction time on the synthesis and electrochemical properties of Mn3O4 nanoparticles by microwave assisted reflux method[J]. Appl Surf Sci, 2012, 259: 624-630.
-
[18]
[18] YANG Y, XIANG H W, XU Y Y, BAI L, LI Y Y. Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer-Tropsch synthesis[J]. Appl Catal A: Gen, 2004, 266(2): 181-194.
-
[19]
[19] GAUBE J, KLEIN H F. The promoter effect of alkali in Fischer-Tropsch iron and cobalt catalysts[J]. Appl Catal A: Gen, 2008, 350(1): 126-132.
-
[20]
[20] LEITH I R, HOWDEN M G. Temperature-programmed reduction of mixed iron-manganese oxide catalysts in hydrogen and carbon monoxide[J].Appl Catal, 1988, 37: 75-92.
-
[21]
[21] VENTER J, KAMINSKY M, GEOFFROY G L, ALBERT VANNICE M. Carbon-supported Fe-Mn and K-Fe-Mn clusters for the synthesis of C2~C4 olefins from CO and H2: I. Chemisorption and catalytic behavior[J]. J Catal, 1987, 103(2): 450-465.
-
[22]
[22] JENSEN K B, MASSOTH F E. Studies on iron-manganese oxide carbon monoxide catalysts: I. Structure of reduced catalyst[J]. J Catal, 1985, 92(1): 98-108.
-
[23]
[23] DE SMIT E, WECKHUYSEN B M. The renaissance of iron-based Fischer-Tropsch synthesis: On the multifaceted catalyst deactivation behaviour[J]. Chem Soc Rev, 2008, 37(12): 2758-2781.
-
[24]
[24] BUKUR D B, MUKESH D S, PATAL A. Promoter effects on precipitated iron catalysts for Fischer-Tropsch synthesis[J].Ind Eng Chem Res, 1990, 29(2): 194-204.
-
[25]
[25] YANG C, ZHAO H, HOU Y, MA D. Fe5C2 nanoparticles: A facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis[J]. J Am Chem Soc, 2012, 134(38): 15814-15821.
-
[1]
-
-
-
[1]
Zhenxing Liu , Jiaen Hu , Zishi Cheng , Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107
-
[2]
Wenke ZHENG , Ce LIU , Wei CHEN , Hongshan KE , Fanlong ZENG , Yibo LEI , Anyang LI , Wenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095
-
[3]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[4]
Yan'e LIU , Shengli JIA , Yifan JIANG , Qinghua ZHAO , Yi LI , Xinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054
-
[5]
Jiaxun Wu , Mingde Li , Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098
-
[6]
Zihao Guo , Shichen Ma , Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038
-
[7]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[8]
Feifei Yang , Wei Zhou , Chaoran Yang , Tianyu Zhang , Yanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017
-
[9]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[10]
Hexing SONG , Zan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402
-
[11]
Huijuan Liao , Yulin Xiao , Dong Xue , Mingyu Yang , Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092
-
[12]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[13]
Xudong Liu , Huili Fan , Junping Xiao , Min Yang , Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041
-
[14]
Guojie Xu , Fang Yu , Yunxia Wang , Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060
-
[15]
Pengzi Wang , Wenjing Xiao , Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090
-
[16]
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054
-
[17]
Yongqing Xu , Yuyao Yang , Mengna Wu , Xiaoxiao Yang , Xuan Bie , Shiyu Zhang , Qinghai Li , Yanguo Zhang , Chenwei Zhang , Robert E. Przekop , Bogna Sztorch , Dariusz Brzakalski , Hui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003
-
[18]
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
-
[19]
Jia Wang , Qing Qin , Zhe Wang , Xuhao Zhao , Yunfei Chen , Liqiang Hou , Shangguo Liu , Xien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044
-
[20]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(664)
- HTML views(71)