Citation: LIU Zong-yuan, WANG Gui-yun, LIU Xian-ping, WANG Yan-ji. Preparation of CuCrO2 and the photocatalytic properties of its composites[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(12): 1473-1480. shu

Preparation of CuCrO2 and the photocatalytic properties of its composites

  • Corresponding author: WANG Gui-yun, 
  • Received Date: 6 June 2013
    Available Online: 25 August 2013

    Fund Project:

  • Delafossite CuCrO2 was prepared with Cr(NO3)3 and Cu(NO3)2 by the semi-wet method via two different routes. The samples were characterized with thermogravimetry-differential scanning calorimetry, X-ray diffraction, diffuse reflectance ultraviolet-visible spectroscopy, scanning electron microscopy and X-ray photoelectron spectroscopy techniques. It was shown that addition of Cr(OH)3 precipitated with aqueous ammonia solution into aqueous Cu(NO3)2 solution is a suitable route to synthesize CuCrO2. In the calcination process, the precursor transformed into CuCrO2 in the sequence: Cr(OH)3 → CuCrO4 → CuCr2O4 → CuCrO2, as verified by the TG-DSC and XRD results. The composites of CuCrO2-WO3 and CuCrO2-ZnO prepared by the grinding method show higher activity than CuCrO2 in the photocatalytic splitting of water into hydrogen under the irradiation of a high-pressure mercury lamp or a xenon lamp.
  • 加载中
    1. [1]

      [1] LIU Z Y, BAI H W, XU S P, SUN D D. Hierarchical CuO/ZnO "corn-like" architecture for photocatalytic hydrogen generation[J]. Int J Hydrogen Energy, 2011, 36(21): 13473-13480.

    2. [2]

      [2] QIN Y, WANG G Y, WANG Y J. Study on the photacatalytic property of La-doped CoO/SrTiO3[J]. Catal Commun, 2007, 8(6): 926-930.

    3. [3]

      [3] LIN H Y, CHEN Y F, CHEN Y W. Water splitting reaction on NiO/InVO4 under visible light irradiation[J]. Int J Hydrogen Energy, 2007, 32(1): 86-92.

    4. [4]

      [4] KAKUTA S, ABE T. Structural characterization of Cu2O after the evolution of H2 under visible light irradiation[J]. Electrochem Solid-State Lett, 2009, 12(3): 1-3.

    5. [5]

      [5] ZHOU S, FANG X D, DENG Z H, LI D, DONG W W, TANO R H, MENG G, WANG T, ZHU X B. Hydrothermal synthesis and characterization of CuCrO2 laminar nanocrystals[J]. J Cryst Growth, 2008, 310(24): 5375-5379.

    6. [6]

      [6] SAADI S, BOUGUELIA A, TRARI M. Photocatalytic hydrogen evolution over CuCrO2[J]. Sol Energy, 2006, 80(3): 272-280.

    7. [7]

      [7] KETIR W, BOUGUELIA A, TRARI M. NO3- removal with a new delafossite CuCrO2 photocatalyst[J]. Desalination, 2009, 244(1): 144-152.

    8. [8]

      [8] BELHADI A, BOUMAZA S, TRARI M. Photoassisted hydrogen production under visible light over NiO/ZnO hetero-system[J]. Appl Energy, 2011, 88(12): 4490-4495.

    9. [9]

      [9] CHEN S F, ZHAO W, LIU W, ZHANG H, YU X L. Preparation, characterization and activity evaluation of p-n junction photocatalyst p-CaFe2O4/n-ZnO[J]. Chem Eng J, 2009, 155(1/2): 466-473.

    10. [10]

      [10] BAMWENDA G R, ARAKAWA H. The visible light induced photocatalytic activity of tungsten trioxide powders[J]. Appl Catal A: Gen, 2001, 210(1/2): 181-191.

    11. [11]

      [11] HU C C, NIAN J N, TENG H. Electrodeposited p-type Cu2O as photocatalyst for H2 evolution from water reduction in the presence of WO3[J]. Sol Energy Mat Sol C, 2008, 92(9): 1071-1076.

    12. [12]

      [12] CHOU T P, ZHANG Q F, FRYXELL G E, CAO G Z. Hierarchically structured ZnO Film for dye-sensitized solar cells with enhanced energy conversion efficiency[J]. Adv Mater, 2007, 19(18): 2588-2592.

    13. [13]

      [13] FU D Y, HAN G Y, MENG C F. Size-controlled synthesis and photocatalytic degradation properties of nano-sized ZnO nanorods[J]. Mater Lett, 2012, 72: 53-56.

    14. [14]

      [14] WANG S J, ZHANG X T, CHENG G, JIANG X H, LI Y C, HUANG Y B, DU Z L. Study on electronic transport properties of WO3/TiO2 nanocrystalline thin films by photoassisted conductive atomic force microscopy[J]. Chem Phys Lett, 2005, 405(1/3): 63-67.

    15. [15]

      [15] XIN G, GUO W, MA T L. Effect of annealing temperature on the photocatalytic activity of WO3 for O2 evolution[J]. Appl Surf Sci, 2009, 256(1): 165-169.

    16. [16]

      [16] TIAN L H, YE L Q, LIU J Y, ZAN L. Solvothermal synthesis of CNTs-WO3 hybrid nanostructures with high photocatalytic activity under visible light[J]. Catal Commun, 2012, 17: 99-103.

    17. [17]

      [17] CHEN H Y, YANG W J, CHANG K P. Characterization of delafossite-CuCrO2 thin films prepared by post-annealing using an atmospheric pressure plasma torch[J]. Appl Surf Sci, 2012, 258(22): 8775-8779.

    18. [18]

      [18] CHIU T W, YU B S, WANG Y R, CHEN K T, LIN Y T. Synthesis of nanosized CuCrO2 porous powders via a self-combustion glycine nitrate process[J]. J Alloy Compd, 2011, 509(6): 2933-2935.

    19. [19]

      [19] KETIR W, REKHILA G, TRARI M, AMRANE A. Preparation, characterization and application of CuCrO2/ZnO photocatalysts for the reduction of Cr(Ⅵ)[J]. J Environ Sci, 2012, 24(12): 2173-2179.

    20. [20]

      [20] WANG J M, ZHENG P C, LI D, DENG Z H, DONG W W, TAO R H, FANG X D. Preparation of delafossite-type CuCrO2 films by sol-gel method[J]. J Alloy Compd, 2011, 509(18): 5715-5719.

    21. [21]

      [21] KIM S Y, LEE J H, KIM J J, HEO Y W. Preferential growth orientations of CuCrO2 films grown by pulsed laser deposition[J]. Curr Appl Phys, 2012, 12(4): S123-S126.

    22. [22]

      [22] TONOOKA K, KIKUCHI N. Prepatation of traspatent CuCrO2: Mg/ZnO p-n junctions by pulsed laser deposition[J]. Thin Solid Films, 2006, 515(4): 2415-2418.

    23. [23]

      [23] CHIU T W, YANG Y C, YEH A C, WANG Y P, FENG Y W. Antibacterial property of CuCrO2 thin films prepared by RF magnetron sputtering deposition[J]. Vacuum, 2013, 87: 174-177.

    24. [24]

      [24] 王建祺, 吴文辉, 冯大明. 电子能谱学(XPS/XAES/UPS)引论[M]. 北京: 国防工业出版社, 1992, 519-558. (WANG Jian-qi, WU Wen-hui, FENG Da-ming. Electron spectroscopy (XPS/XAES/UPS) introduction[M].Beijing: National Defence Industry Press, 1992, 519-558.)

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    5. [5]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    6. [6]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    7. [7]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    8. [8]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    9. [9]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    10. [10]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    11. [11]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    12. [12]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    13. [13]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    14. [14]

      Jingzhuo Tian Chaohong Guan Haobin Hu Enzhou Liu Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068

    15. [15]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    16. [16]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    17. [17]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    18. [18]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    19. [19]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    20. [20]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(0)
  • Abstract views(459)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return