Citation: SHEN Shu-guang, LI Huan-mei, WANG Tao, CAI Bei, QIN Hai-feng, WANG Chun-yan. Effect of coal rank on structure of coal-based solid acids and their catalytic performance in cellulose hydrolysis[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(12): 1466-1472. shu

Effect of coal rank on structure of coal-based solid acids and their catalytic performance in cellulose hydrolysis

  • Corresponding author: SHEN Shu-guang, 
  • Received Date: 16 April 2013
    Available Online: 5 July 2013

    Fund Project:

  • Coal-based solid acids (CSAs) were successfully prepared from coals with different ranks at various carbonization temperatures. XRD, FT-IR and 13C NMR were employed to characterize structure of the catalysts. The influence of coal rank and carbonization temperature on the heterogeneous catalytic hydrolysis of cellulose was investigated by comparing the yield of reducing sugar and glucose. The results show that coal has a structure advantage over the other traditional carbon sources for solid acids. In contrast to the traditional carbon-based catalysts, the unit structure of CSA is fused aromatic rings linked by bridge bonds (-O-, -CH2-) and the fused aromatic rings are bearing side chains (-CH3, -OCH3, -CH2CH3) besides phenolic -OH, -COOH and -SO3H groups. In addition to the sulfonic groups, the others are derived from the raw coal structure. With rising carbonization temperature, the species and amounts of functional groups and the density of sulfonic acid groups are found to decrease gradually in CSAs, while the aromaticity of CSAs is opposite. The adjustability of CSAs structure and required carbonization temperatures are reduced with increasing coal rank. The CSAs show a higher activity in the cellulose hydrolysis process, wherein the Huolinhe CSA has the highest catalytic activity. The hydrolytic activity is influenced by the size and the stack height of the aromatic sheet, the bridge bond and the sulfonic acid group density, which is a result of the synergistic effect of a number of reactive groups.
  • 加载中
    1. [1]

      [1] PARISH L D, FUKUOKA A. Cellulose conversion under heterogeneous[J]. Chemsuschem, 2008, 12: 969-975.

    2. [2]

      [2] HARA M, YOSHIDA T, TAKAGAKI A, TAKATA T, KONDO J N, HAYASHI S, DOMEN K. A carbon material as a strong protonic acid[J]. Angew Chem Int Ed, 2004, 43(22): 2955-2958.

    3. [3]

      [3] TODA M, TAKAGAKI A, OKAMURA M, KONDO J N, HAYASHI S, DOMEN K, HARA M. Green chemistry: Biodiesel made with sugar catalyst[J]. Nature, 2005, 438: 178-178.

    4. [4]

      [4] SUGANUMA S, NAKAJIMA K, KITANO M, YAMAGUCHI D, KATO H, HAYASHI S, HARA M. Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH Groups[J]. J Am Chem Soc, 2008, 130(38): 12787-12793.

    5. [5]

      [5] DEHKHODA A M, WEST A H, ELLIS N. Biochar based solid acid catalyst for biodiesel production[J]. Appl Catal A: Gen, 2010, 382(2): 197-204.

    6. [6]

      [6] 乌日娜, 王同华, 修志龙, 郭峰, 潘艳秋, 银建中. 生物质炭基固体酸催化剂的制备[J]. 催化学报, 2009, 30(12): 1203-1208. (WU Ri-na, WANG Tong-hua, XIU Zhi-long, GUO Feng, PAN Yan-qiu, YIN Jian-zhong. Preparation of a biomass carbon-based solid acid catalyst[J]. Chinese Journal of Catalysis, 2009, 30(12): 1203-1208.)

    7. [7]

      [7] WU Y Y, FU Z H, YIN D L, XU Q, LIU F L, LU C L, MAO L Q. Microwave-assisted hydrolysis of crystalline cellulose catalyzed by biomass char sulfonic acids[J]. Green Chemistry, 2010, 12: 696-700.

    8. [8]

      [8] SUGANUMA S, NAKAJIMA K, KITANO M, YAMAGUCHI D, KATO H, HAYASHI S, HARA M. Synthesis and acid catalysis of cellulose-derived carbon-based solid acid[J]. Solid State Sci, 2010, 12(6): 1029-1034.

    9. [9]

      [9] OKAMURA M, TAKAGAKI A, TODA M, KONDO J N, DOMEN K, TATSUMI T, HAYASHI S, HARA M. Acid-catalyzed reactions on flexible polycyclic aromatic carbon in amorphous carbon[J]. Chem Mater, 2006, 18(13): 3039-3045.

    10. [10]

      [10] WU Y Y, ZHANG C, LIU Y C, FU Z H, DAI B H, YIN D L. Biomass char sulfonic acids(BC-SO3H)-catalyzed hydrolysis of bamboo under microwave irradiation[J]. BioResources, 2012, 7(4): 5950-5959.

    11. [11]

      [11] 周丽娜, 刘可, 华伟明, 乐英红, 高滋. 碳基磺酸化固体酸材料的制备及其催化性能[J]. 催化学报, 2009, 30(3): 196-200. (ZHOU Li-na, LIU Ke, HUA Wei-ming, LE Ying-hong, GAO Zi. Preparation and catalytic performance of sulfonated carbon-based solid acid[J]. Chinese Journal of Catalysis, 2009, 30(3): 196-200. )

    12. [12]

      [12] ZHANG B H, REN J W, WANG Y Q, GUO Y, GUO Y L, LU G Z, WANG Y Q. Novel sulfonated carbonaceous materials from p-toluenesulfonic acid/glucose as a high-performance solid-acid catalyst[J]. Catal Commun, 2010, 11(7): 629-632.

    13. [13]

      [13] VAN DE VYVER S, PENG L, GEBOERS J, SCHEPERS H, CLIPPEL F, GOMMES C J, GODERIS B, JACOBS P A, SELS B F. Sulfonated silica/carbon nanocomposites as novel catalysts for hydrolysis of cellulose to glucose[J]. Green chemistry, 2010, 12(9): 1560-1563.

    14. [14]

      [14] MACIA-AGULLO J A, SEVILLA M, DIEZ M A, FUERTES A B. Synthesis of carbon-based solid acid microspheres and their application to the production of biodiesel[J]. ChemSusChem, 2010, 3(12): 1352-1354.

    15. [15]

      [15] BUDARIN V, CLARK J H, HARDY J J E, LUQUE R, MILKOWSKI K, TAVENER S J, WILSON A. Starbons: New starch-derived mesoporous carbonaceous materials with tunable properties[J]. Angew Chem, 2006, 118: 3866-3870.

    16. [16]

      [16] FUKUHARA K, NAKAJIMA K, KITANO M, KATO H, HAYASHI S, HARA M. Structure and catalysis of cellulose-derived amorphous carbon bearing SO3H groups[J]. ChemSusChem, 2011, 4(6): 778-784.

    17. [17]

      [17] KITANO M, YAMAGUCHI D, SUGANUMA S, NAKAJIMA K, KATO H, HAYASHI S, HARA M. Preparation of a sulfonated porous carbon catalyst with high specific surface area[J]. Catal lett, 2009, 131(1/2): 242-249.

    18. [18]

      [18] 王华瑜, 张长斌, 贺泓, 王莲. 磁性碳基磺酸化固体酸催化剂的制备及其催化水解纤维素[J]. 物理化学学报, 2010, 26(7): 1873-1878. (WANG Hua-yu, ZHANG Chang-bin, HE Hong, WANG Lian. Preparation of magnetic sulfonated carbon-based solid acid catalysts for the hydrolysis of cellulose[J]. Acta Physico-Chimica Sinica, 2010, 26(7): 1873-1878.)

    19. [19]

      [19] NAKAJIMA K, HARA M. Amorphous carbon with SO3H groups as a solid brnsted acid catalyst[J]. ACS Catal, 2012, 2(7): 1296-1304.

    20. [20]

      [20] YAMAGUCHI D, HARA M. Synthesis and acid catalysis of cellulose-based solid acid[J]. Solid State Sci, 2010, 12: 1029-1034.

    21. [21]

      [21] FU Z W, WAN H, CUI Q. Hydrolysis of carboxylic acid esters catalyzed by a carbon-based solid acid[J]. React Kinet Mech Cat, 2011, 104(2): 313-321.

    22. [22]

      [22] NILOOFAR T, DAVOODNIA A. Carbon-based solid acid as an efficient and reusable catalyst for one-pot synthesis of tetrasubstituted imidazoles under solvent-free conditions[J]. Chinese Journal of Chemistry, 2011, 29(1): 203-206.

    23. [23]

      [23] SHU Q, GAO J X, LIAO Y H. Reaction kinetics of biodiesel synthesis from waste oil using a carbon-based solid acid catalyst[J]. Chinese Journal of Chemical Engineering, 2011, 19(1): 163-168.

    24. [24]

      [24] LIANG X Z, ZENG M F, QI C Z. One-step synthesis of carbon functionalized with sulfonic acid groups using hydrothermal carbonization[J]. Carbon, 2010, 48(6): 1844-1848.

    25. [25]

      [25] TAKAGAKI A, TODA M, OKAMURA M, KONDO J N, HAYASHI S, DOMEN K, HARA M. Esterification of higher fatty acids by a novel strong solid acid[J]. Catal Today, 2006, 116(2): 157-161.

    26. [26]

      [26] SUGANUMA S, NAKAJIMA K, KITANO M, HAYASHI S, HARA M. sp3-linked amorphous carbon with sulfonic acid groups as a heterogeneous acid catalyst[J]. ChemSusChem, 2012, 5(9): 1841-1846.

    27. [27]

      [27] LIANG X Z, XIAO H Q, SHEN Y M, QI C Z. One-step synthesis of novel sulfuric acid groups' functionalized carbon via hydrothermal carbonization[J]. Mater Lett, 2010, 64(8): 953-955.

    28. [28]

      [28] SUGANUMA S, NAKAJIMA K, KITANO M, KATO H, TAMURA A, KONDO H, YANAGAWA S, HAYASHI S, HARA M. SO3H-bearing mesoporous carbon with highly selective catalysis[J]. Micropor Mesopor Mater, 2011, 143(2/3): 443-450.

    29. [29]

      [29] 申曙光, 王涛, 秦海峰, 代光, 李焕梅. 不同碳源制备碳基固体酸及其在水解纤维素中的应用[J]. 功能材料, 2012, 12(43): 1598-1601. (SHEN Shu-guang, WANG Tao, QIN Hai-feng, DAI Guang, LI Huan-mei. Synthesis and properties in hydrolytic cellulose of carbon-based solid acids prepared from different carbon sources[J]. Functional materials, 2012, 12(43): 1598-1601.)

    30. [30]

      [30] LIU W Y, LIU N, ZHENG R Y, LI B, ZHANG X, LIANG S J, WANG Z. Coaled carbon-based solid acid: A new and efficient catalyst for click synthesis of 3, 4-dihydropyrimidin-2(1H)-ones under solvent-free conditions[J]. Adv Mater Res, 2013, 634: 504-507.

    31. [31]

      [31] YUCHUAN L, HUBER G W. The critical role of heterogeneous catalysis in lignocellulosic biomass conversion[J]. Energy Environ Sci, 2009, 2: 68-80.

    32. [32]

      [32] GUO H X, QI X H, LI L Y, RICHARD L. SMITH JR. Hydrolysis of cellulose over functionalized glucose-derived carbon catalyst in ionic liquid[J]. Bioresour Technol, 2012, 116: 355-359.

    33. [33]

      [33] ARRIGONE G M, HILTON M. Theory and practice in using fourier transform infrared spectroscopy to detect hydrocarbons in emissions from gas turbine engines[J]. Fuel, 2005, 84(9): 1052-1058.

    34. [34]

      [34] JOEL R G, FUJIWARA H, SHARP C R, LOGUSCH W E. Characterization of covalent protein conjugates using solid-state carbon-13 NMR spectroscopy[J]. Biochemistry, 1991, 30(29): 7057-7062.

    35. [35]

      [35] CHUANG I S, MACIEL G E. 13C NMR Investigation of the stability of a resol-type phenol-formaldehyde resin toward formalin, toward base, and toward nonoxidizing or oxidizing acid[J]. Macromolecules, 1991, 24(5): 1025-1032.

    36. [36]

      [36] NEGRE M, GENNARI M, CRECCHIO C. Effect of ethylene oxide sterilization on soil organic matter, spectroscopic analysis and adsorption of acifluorfen[J]. Soil Sci, 1995, 159(3): 199-206.

    37. [37]

      [37] HAMAGUCHI M, NISHIZAWA T. Quantitative analysis of aromatic carbon types in pitch by fused-state 13C NMR spectroscopy[J]. Fuel, 1992, 71(7): 747-750.

  • 加载中
    1. [1]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    2. [2]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    3. [3]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    4. [4]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    5. [5]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    6. [6]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    7. [7]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    8. [8]

      Wanchun Zhu Yongmei Liu Li Wang Yunshan Bai Shu'e Song Xiaokui Wang Zhongyun Wu Hong Yuan Yunchao Li Fuping Tian Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028

    9. [9]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    10. [10]

      Yingxian Wang Tianye Su Limiao Shen Jinping Gao Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015

    11. [11]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    12. [12]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    13. [13]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    14. [14]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    15. [15]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    16. [16]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    17. [17]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    18. [18]

      Dongyan Tang Yanqiu Jiang Su'e Hao Yunchen Du Lizhu Zhang Zhigang Liu . 融合优势资源与聚焦多元培养的非化类大学化学一流课程建设. University Chemistry, 2025, 40(6): 71-76. doi: 10.12461/PKU.DXHX202406062

    19. [19]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    20. [20]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

Metrics
  • PDF Downloads(0)
  • Abstract views(451)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return